cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A113262 One quarter of the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 8, 13, 1, 6, 12, 5, 14, 8, 6, 29, 18, 1, 20, 30, 8, 12, 24, 13, 31, 14, 1, 40, 30, 6, 32, 61, 12, 18, 48, 5, 38, 20, 14, 78, 42, 8, 44, 60, 6, 24, 48, 29, 57, 31, 18, 70, 54, 1, 72, 104, 20, 30, 60, 30, 62, 32, 8, 125, 84, 12, 68, 90, 24, 48, 72, 13, 74, 38, 31
Offset: 1

Views

Author

Michael Somos, Oct 21 2005

Keywords

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223, Entry 3(iv).
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 229.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.3), p. 76, Eq. (31.43).

Crossrefs

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Table[A034896[n]/4, {n, 1, 50}] (* G. C. Greubel, Dec 24 2017 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, # KroneckerSymbol[ 9, #] (-1)^(n + #) &]]; (* Michael Somos, Nov 10 2018 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d * kronecker(9, d) * (-1)^(n-d)))};
    
  • PARI
    {a(n) = my(A, p, e); if(n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==3, 1, (p^(e+1) - 1) / (p - 1) - 2*(p==2))))};

Formula

a(n) is multiplicative with a(3^e) = 1, a(2^e) = 2^(e+1) - 3, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 3.
G.f.: Sum_{k>0} k * x^k / (1 - (-x)^k) * Kronecker(9, k) = ((theta_3(x) * theta_3(x^3))^2 - 1) / 4.
A034896(n) = 4*a(n) if n > 0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Dec 01 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*(4^(1-s)-2^(1-s)+1)*(1-3^(1-s)). - Amiram Eldar, Jan 06 2023

A185152 Expansion of (q/2) * phi(q)^3 (d/dq) phi(q) in powers of q.

Original entry on oeis.org

1, 6, 12, 12, 30, 72, 56, 24, 117, 180, 132, 144, 182, 336, 360, 48, 306, 702, 380, 360, 672, 792, 552, 288, 775, 1092, 1080, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 1404, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 3510, 3312, 2256, 576, 2793, 4650
Offset: 1

Views

Author

Michael Somos, Jan 23 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = x + 6*x^2 + 12*x^3 + 28*x^4 + 30*x^5 + 72*x^6 + 56*x^7 + 24*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n == 0, 0, n Sum[ d Sign@Mod[d, 4], {d, Divisors@n}]]; (* Michael Somos, Jun 20 2015 *)
    a[ n_] := Sign[n] With[ {f = Series[ EllipticTheta[ 3, 0, q], {q, 0, Abs@n + 1}]}, SeriesCoefficient[ (q/2) f^3 D[f, q], Abs@n]]; (* Michael Somos, Jun 20 2015 *)
    a[ n_] := Sign[n] With[ {f = Series[ EllipticTheta[ 3, x, q], {q, 0, Abs@n + 1}]}, SeriesCoefficient[ (-1/8) f^3 D[f, x, x] /. x -> 0, Abs@n]]; (* Michael Somos, Jun 20 2015 *)
  • PARI
    {a(n) = if( n==0, 0, n * sumdiv( n, d, if( d%4, d)))};

Formula

Expansion of (-1/8) * theta_3(0,q)^3 * theta_3(0,q)'' in powers of nome q.
Expansion of (-1/24) * q * (d/dq) (P(q) - 4 * P(q^4)) where P() is a Ramanujan Eisenstein series.
Expansion of (1/8) * (E(k^2) - (1-k^2) * K(k^2)) * K(k^2)^3 / (Pi/2)^4 in powers of nome q.
Multiplicative with a(2^e) = 3 * 2^e if e>0, a(p^e) = p^e * (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k^2 * x^k / (1 + (-x)^k)^2.
G.f.: Sum_{k>0} k^2 * x^k / (1 - x^k)^2 * (mod(k, 4) > 0).
a(n) = n * Sum of divisors of n that are not divisible by 4 = n * A046897(n).
a(n) = - a(-n). for all n in Z. Convolution of A000118 and A186690.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(2*s-4)) * zeta(s-2) * zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2/24 = 0.41123... (A222171) . (End)

A369180 Alternating sum of the k-adic valuations (ruler functions) of n.

Original entry on oeis.org

0, 1, -1, 3, -1, 1, -1, 5, -3, 1, -1, 4, -1, 1, -3, 8, -1, 0, -1, 4, -3, 1, -1, 7, -3, 1, -5, 4, -1, 1, -1, 10, -3, 1, -3, 5, -1, 1, -3, 7, -1, 1, -1, 4, -6, 1, -1, 11, -3, 0, -3, 4, -1, -1, -3, 7, -3, 1, -1, 6, -1, 1, -6, 14, -3, 1, -1, 4, -3, 1, -1, 9, -1, 1, -6, 4, -3, 1
Offset: 1

Views

Author

Friedjof Tellkamp, Jan 15 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add((-1)^i*padic[ordp](n, i), i=2..n):
    seq(a(n), n=1..78);  # Alois P. Heinz, Jan 15 2024
  • Mathematica
    z = 70; Sum[(-1)^k IntegerExponent[Range[z], k], {k, 2, z}]
  • PARI
    a(n) = sum(k=2, n, (-1)^k * valuation(n,k)); \\ Michel Marcus, Jan 18 2024
    
  • PARI
    a(n)=sumdiv(n,k, if(k>1, (-1)^k * valuation(n, k))) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = Sum_{k=2..n} (-1)^k * valuation(n,k).
a(n) = A007814(n) - A007949(n) + A235127(n) - (...).
G.f.: Sum_{k>=2, j>=1} (-1)^k x^(k^j)/(1-x^(k^j)).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n) = log(2).
Dirichlet g.f.: zeta(s) * Sum_{k>=1} (1 - eta(ks)).
Sum_{n>=1} a(n)/n^2 = Pi^2/24.

A276712 Decimal expansion of zeta(3)/8.

Original entry on oeis.org

1, 5, 0, 2, 5, 7, 1, 1, 2, 8, 9, 4, 9, 4, 9, 2, 8, 5, 6, 7, 4, 9, 6, 7, 2, 7, 0, 1, 8, 8, 9, 3, 1, 2, 4, 8, 8, 4, 5, 6, 2, 3, 2, 8, 6, 5, 4, 2, 5, 6, 2, 3, 6, 0, 2, 2, 4, 0, 3, 3, 9, 4, 4, 4, 1, 7, 7, 2, 9, 7, 7, 5, 7, 2, 3, 2, 8, 9
Offset: 0

Views

Author

Terry D. Grant, Sep 15 2016

Keywords

Examples

			0.150257112894949285674967270188...
		

References

  • James Dodson, The Mathematical Repository Containing Analytical Solutions of Five Hundred Questions: Mostly Selected from Scarce and Valuable Authors, (1748), page 375.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta();  Evaluate(L,3)/8; // G. C. Greubel, Nov 24 2021
  • Mathematica
    RealDigits[(Zeta[3])/8, 10, 100][[1]]
  • PARI
    zeta(3)/8 \\ Michel Marcus, Sep 16 2016
    
  • Sage
    (zeta(3)/8).n(100)
    

Formula

Equals Sum_{n>=1} 1/(2n)^3 = 1/8 + 1/64 + 1/216 + 1/512 + ...
Equals A002117/8.
zeta(3)/8 + A233091 = Sum_{n>=1} 1/(2n+1)^3 + Sum_{n>=1} 1/(2n)^3 = zeta(3).
Equals Sum_{k>=1} (-1)^(k+1) * H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 22 2020
Equals Integral_{x=0..Pi/4} log(sin(x))*log(cos(x))/(sin(x)*cos(x)) dx (Lord, 2005). - Amiram Eldar, Jun 23 2023
Equals -integral_{x=0..1} log(x) log(1+x)/(1+x). [Barbieri] - R. J. Mathar, Jun 07 2024

A228274 a(n) = Sum_{d|n, n/d odd} n * d.

Original entry on oeis.org

1, 4, 12, 16, 30, 48, 56, 64, 117, 120, 132, 192, 182, 224, 360, 256, 306, 468, 380, 480, 672, 528, 552, 768, 775, 728, 1080, 896, 870, 1440, 992, 1024, 1584, 1224, 1680, 1872, 1406, 1520, 2184, 1920, 1722, 2688, 1892, 2112, 3510, 2208, 2256, 3072, 2793, 3100
Offset: 1

Views

Author

Michael Somos, Aug 19 2013

Keywords

Examples

			G.f. = x + 4*x^2 + 12*x^3 + 16*x^4 + 30*x^5 + 48*x^6 + 56*x^7 + 64*x^8 + ...
a(6) = 48 = 6 * (2 + 6). a(9) = 117 = 9 * (1 + 3 + 9). a(10) = 120 = 10 * (2 + 10).
		

Crossrefs

Programs

  • Mathematica
    A228274[n_] := If[ n < 1, 0, n Sum[ d Mod[n / d, 2], {d, Divisors @ n}]]; Table[A228274[n], {n, 50}]
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv(n, d, d * (n/d % 2)))};

Formula

Multiplicative with a(2^e) = 4^e, a(p^e) = p^e * (p^(e+1) - 1) / (p - 1) if p>2.
G.f.: Sum_{k>0} k^2 * (x^k + x^(3*k)) / (1 - x^(2*k))^2. [see Basoco (1943) bottom page 305]
G.f.: Sum_{k>0} k^2 * (3 - (-1)^k)/4 * x^k / (1 - x^k)^2.
G.f.: Sum_{k>0 odd} k * (x^k + x^(2*k)) / (1 - x^k)^3.
a(n) = n * A002131(n). a(2*n) = 4 * a(n).
a(n) = A007331(n) - 4 * Sum_{k>0} A002131(k) * A002131(n-k). [see Basoco (1943) page 305 equation (9)]
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Nov 30 2022

A282468 Decimal expansion of the zeta function at 2 of every second prime number.

Original entry on oeis.org

1, 4, 4, 7, 1, 5, 5, 8, 6, 6, 8, 8, 7
Offset: 0

Views

Author

Terry D. Grant, Apr 14 2017

Keywords

Comments

From Husnain Raza, Aug 30 2023: (Start)
Note that since p_n > n*log(n), we can place a bound on the tail of the sum:
Sum_{n >= N} (prime(2n))^(-2) <= Sum_{n >= N} (2*n*log(2n))^(-2) <= Integral_{x=N..oo} (2*x*log(2x))^(-2) dx.
Taking the sum over all primes < 10^12, we see that the constant lies between 0.14471558668870 and 0.14471558668873. (End)

Examples

			1/3^2 + 1/7^2 + 1/13^2 + 1/19^2 + 1/29^2 + ... = 0.14471558...
		

Crossrefs

Zeta functions at 2: A085548 (for primes), A275647 (for nonprimes), A013661 (for natural numbers), A117543 (for semiprimes), A131653 (for triprimes), A222171 (for even numbers), A111003 (for odd numbers).

Programs

  • PARI
    sum(n=1, 2500000, 1./prime(2*n)^2)
    
  • PARI
    \\ see Raza link

Formula

Equals Sum_{n>=1} 1/A031215(n)^2 = Sum_{n>=1} 1/prime(2n)^2.

Extensions

a(8)-a(12) from Husnain Raza, Aug 31 2023

A343481 a(n) is the sum of all digits of n in every prime base 2 <= p <= n.

Original entry on oeis.org

1, 3, 3, 6, 6, 10, 11, 11, 10, 15, 16, 22, 21, 21, 23, 30, 32, 40, 42, 42, 39, 48, 52, 53, 49, 52, 53, 63, 66, 77, 83, 82, 76, 77, 82, 94, 87, 85, 90, 103, 107, 121, 123, 129, 120, 135, 144, 147, 153, 150, 151, 167, 176, 178, 185, 181, 168, 185, 194, 212, 199
Offset: 2

Views

Author

Amiram Eldar, Apr 16 2021

Keywords

Examples

			a(5) = 6 since in the prime bases 2, 3 and 5 the representations of 5 are 101_2, 12_3 and 10_5, respectively, and (1 + 0 + 1) + (1 + 2) + (1 + 0) = 6.
		

Crossrefs

Programs

  • Mathematica
    s[n_, b_] := Plus @@ IntegerDigits[n, b]; ps[n_] := Select[Range[n], PrimeQ]; a[n_] := Sum[s[n, b], {b, ps[n]}]; Array[a, 100, 2]
  • PARI
    a(n) = sum(b=2, n, if (isprime(b), sumdigits(n, b))); \\ Michel Marcus, Apr 17 2021

Formula

a(n) ~ (1-Pi^2/12)*n^2/log(n) + c*n^2/log(n)^2 + o(n^2/log(n)^2), where c = 1 - Pi^2/24 + zeta'(2)/2 = 1 - A222171 - (1/2)*A073002 = 0.1199923561... (Fissum, 2020).

A358345 a(n) is the number of even square divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

First differs from A235127 at n = 36.
The first position of k >= 0 in this sequence is A187941(k)^2.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := Floor[e/2] + 1; f2[p_, e_] := If[p == 2, 1, Floor[e/2] + 1]; a[1] = 0; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, 1+f[i,2]\2) - prod(i=1, #f~, if(f[i,1] == 2, 1, 1+f[i,2]\2))};
    
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d) && !(d%2), 1)); \\ Michel Marcus, Nov 11 2022

Formula

a(n) = A046951(n) - A298735(n).
a(n) = 2 * A046951(n) - A046951(4*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/24 (A222171).

A348372 Decimal expansion of Sum_{k>=2} H(k)*H(k+1)/(k^3-k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

8, 8, 6, 7, 0, 9, 5, 8, 0, 1, 2, 8, 3, 4, 9, 1, 0, 5, 4, 8, 2, 1, 5, 8, 0, 4, 6, 8, 2, 7, 0, 4, 3, 7, 1, 1, 9, 3, 0, 2, 7, 6, 2, 3, 2, 3, 5, 7, 8, 0, 1, 5, 0, 8, 7, 7, 3, 8, 3, 8, 8, 8, 7, 3, 1, 5, 6, 5, 9, 9, 2, 6, 6, 1, 2, 8, 8, 6, 6, 9, 1, 3, 5, 5, 1, 3, 6, 9, 0, 1, 2, 3, 5, 7, 2, 5, 0, 6, 5, 5, 2, 7, 7, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Oct 15 2021

Keywords

Examples

			0.88670958012834910548215804682704371193027623235780...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5/2 - Pi^2/24 - Zeta[3], 10, 100][[1]]

Formula

Equals 5/2 - Pi^2/24 - zeta(3).

A348731 Decimal expansion of Integral_{x=0..1} x*log(x)/(1+x+x^2) dx (negated).

Original entry on oeis.org

1, 5, 7, 6, 6, 0, 1, 4, 9, 1, 6, 7, 8, 3, 2, 3, 3, 0, 3, 9, 0, 5, 4, 4, 6, 7, 4, 0, 6, 9, 9, 6, 2, 2, 1, 8, 2, 2, 3, 7, 4, 9, 4, 6, 5, 4, 6, 2, 9, 5, 6, 7, 6, 9, 1, 3, 4, 1, 3, 6, 0, 4, 4, 9, 7, 3, 2, 2, 5, 6, 6, 4, 4, 7, 5, 2, 5, 7, 8, 4, 8, 8, 9, 8, 1, 0, 8, 1, 8, 1, 4, 5, 7, 1, 4, 7, 9, 7, 1, 2, 5, 7, 4, 8, 0
Offset: 0

Views

Author

Dumitru Damian, Oct 31 2021

Keywords

Examples

			-0.15766014916783233039054467406996221822374946546295676913413604497322566...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Integrate[x*Log[x]/(1 + x + x^2), {x, 0, 1}], 10, 100][[1]] (* Amiram Eldar, Oct 31 2021 *)
    RealDigits[Pi^2/54 - PolyGamma[1, 2/3]/9, 10, 100][[1]] (* Vaclav Kotesovec, Oct 31 2021 *)
  • PARI
    intnum(x=0, 1, x*log(x)/(1+x+x^2)) \\ Michel Marcus, Oct 31 2021
  • SageMath
    RealField(25)(numerical_integral(x*log(x)/(1+x+x^2), 0, 1)[0])
    

Formula

Equals Pi^2/54 - PolyGamma(1, 2/3)/9. - Vaclav Kotesovec, Oct 31 2021
Previous Showing 11-20 of 20 results.