cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A153880 Shift factorial base representation left by one digit.

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 24, 26, 30, 32, 36, 38, 48, 50, 54, 56, 60, 62, 72, 74, 78, 80, 84, 86, 120, 122, 126, 128, 132, 134, 144, 146, 150, 152, 156, 158, 168, 170, 174, 176, 180, 182, 192, 194, 198, 200, 204, 206, 240, 242, 246, 248, 252, 254, 264, 266, 270, 272
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2009

Keywords

Comments

Equally, append 0 to the end of the factorial base representation of n (= A007623(n)), then convert back to decimal.
Involution A225901 maps each term of this sequence to a unique term of A255411, and vice versa.

Examples

			Factorial base representation of 5 is A007623(5) = "21". Shifting this once left (that is, appending 0 to the end) yields "210", which is factorial base representation for 14. Thus a(5) = 14.
		

Crossrefs

Indices of zeros in A260736.
Cf. A153883 (terms divided by 2).
Cf. A266193 (a left inverse).
Cf. A273670 (complement).
Cf. also A007623, A225901, A255411.

Programs

  • Mathematica
    Table[Function[b, FromDigits[IntegerDigits[n, b]~Join~{0}, b]]@ MixedRadix[Reverse@ Range@ 12], {n, 0, 57}] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n
  • Scheme
    (define (A153880 n) (let loop ((n n) (z 0) (i 2) (f 2)) (cond ((zero? n) z) (else (loop (floor->exact (/ n i)) (+ (* f (modulo n i)) z) (+ 1 i) (* f (+ i 1)))))))
    

Formula

Other identities. For all n >= 0:
A266193(a(n)) = n.

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A060130 Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Examples

			19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.
		

Crossrefs

Cf. A227130 (positions of even terms), A227132 (of odd terms).
The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.
Differs from similar A267263 for the first time at n=30.

Programs

  • Maple
    A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))
    fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;
    count_nonfixed := l -> convert(map(nops, l), `+`);
    positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;
    # For procedure PermUnrank3R see A060117
  • Mathematica
    Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* Michael De Vlieger, Dec 30 2017 *)
  • Scheme
    (define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))
    ;; Two other implementations, that use memoization-macro definec:
    (definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))
    (definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))
    ;; Antti Karttunen, Dec 30 2017

Formula

a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).
a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).
a(n) = A060129(n) - A060128(n).
a(n) = A084558(n) - A257510(n).
a(n) = A275946(n) + A275962(n).
a(n) = A275948(n) + A275964(n).
a(n) = A055091(A060119(n)).
a(n) = A069010(A277012(n)) = A000120(A275727(n)).
a(n) = A001221(A275733(n)) = A001222(A275733(n)).
a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).
a(n) = A046660(A275725(n)).
a(A225901(n)) = a(n).
A257511(n) <= a(n) <= A034968(n).
A275806(n) <= a(n).
a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]
a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

Extensions

Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by Antti Karttunen, Dec 30 2017

A273670 Numbers with at least one maximal digit in their factorial base representation.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 0

Views

Author

Antti Karttunen, May 29 2016

Keywords

Comments

Indexing starts from 0 (with a(0) = 1) to tally with the indexing used in A256450.
Numbers n for which is A260736(n) > 0.
Involution A225901 maps each term of this sequence to a unique term of A256450, and vice versa.

Crossrefs

Cf. A153880 (complement).
Cf. A273663 (a left inverse).
Cf. A260736.
Cf. also A225901, A256450.

Programs

  • Mathematica
    r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 105, Total@ Boole@ Map[SameQ @@ # &, Transpose@{#, Range@ Length@ #}] > 0 &@ Reverse@ IntegerDigits[#, r] &] (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x])[::-1] return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a260736(n): return 0 if n==0 else n%2 + a260736(a257684(n)) print([n for n in range(106) if a260736(n)>0]) # Indranil Ghosh, Jun 20 2017

Formula

a(0) = 1, and for n > 1, if A260736(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]
Other identities. For all n >= 0:
A273663(a(n)) = n.

A256450 Numbers that have at least one 1-digit in their factorial base representation (A007623).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

Numbers n for which A257679(n) = 1, i.e., numbers n such that the least nonzero digit in their factorial base representation (A007623) is 1.
Involution A225901 maps each term of this sequence to a unique term of A273670, and vice versa.
Starting offset is zero (with a(0) = 1) because it is the most natural offset for the given fast recurrence.

Crossrefs

Complement of A255411.
Cf. A257680 (characteristic function), A273662 (left inverse).
First row of A257503, first column of A257505.
Subsequences: A059590 (apart from its zero-term), A255341, A255342, A255343, A257262, A257263, A258198, A258199.
Cf. also A227187 (numbers with at least one nonleading zero) and A273670, A225901.

Programs

  • Mathematica
    Select[Range@ 101, MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &] (* Michael De Vlieger, May 30 2016, Version 10.2 *)
    r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 101, Min[IntegerDigits[#, r] /. 0 -> Nothing] == 1 &]  (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    def A(n, p=2): return n if n

    =1]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1, and for n >= 1, if A257511(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]
Other identities:
For all n >= 0, A273662(a(n)) = n. [A273662 works as the left inverse for this sequence.]
From Antti Karttunen, May 26 2015: (Start)
Alternative recurrence for the same sequence:
Set k = A258198(n), d = n - A258199(n) and f = A000142(k+1) = (k+1)! If d < f then b(n) = f+d, otherwise b(n) = ((2+floor((d-f)/A258199(n))) * f) + b((d-f) mod A258199(n)). For offset=1 sequence, define a(n) = b(n-1).
(End)

Extensions

Starting offset changed from 1 to 0 by Antti Karttunen, May 30 2016

A060502 a(n) = number of occupied digit slopes in the factorial base representation of n (see comments for the definition); number of drops in the n-th permutation of list A060117.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Mar 22 2001

Keywords

Comments

From Antti Karttunen, Aug 11-24 2016: (Start)
a(n) gives the number of occupied "digit slopes" in the factorial base representation of n, or more formally, the number of distinct elements in a multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present in factorial base representation of n and i_x is that digit's position from the right]. Here one-based indexing is used, thus the least significant digit is in position 1. Each value {digit's position} - {digit's value} determines on which slope that particular nonzero digit is. The nonzero digits for which (position - digit) = 0, are said to be on the "maximal slope" (see A260736), those with value 1 on "sub-maximal", etc.
The number of occupied digit slopes translates directly to the number of drops in the n-th permutation as given in the list A060117 because only the largest (and thus leftmost) of all nonzero digits on any particular slope adds a (single) drop to the permutation, when constructed by the unranking algorithm employed in A060117.
The original definition of this sequence is (essentially):
a(n) = the average of digits (where "digits" may eventually obtain also any values > 9) in each siteswap pattern A060498(n) constructed from each permutation in list A060117, which is equal to number of balls used in that pattern.
The equivalence of the old and the new definitions is seen from the following (as kindly pointed by Olivier Gérard in personal mail): For any permutation p of [1..n], Sum(i=1..n) p(i)-i = 0 (whether taken modulo n or not), thus Sum(i=1..n) (p(i)-i modulo n) = Sum(i={set of nondrops}) (p(i)-i) + Sum(i={set of drops}) (n + (p(i)-i)) = 0 + n * #{set of drops}, where drops is the set of those i where p[i] < i and nondrops are those i for which p[i] >= 1.
Involution A225901 maps this metric to another metric A275806 which gives the number of distinct nonzero digits in factorial base representation of n. See also A275811.
A007489 (repunits in this context) gives the positions where a(n) = A084558(n) (the length of factorial base representation of n). These are also the positions of records.
(End)

Examples

			For n=23 ("321" in factorial base representation, A007623), all the digits are maximal for their positions (they occur on the "maximal slope"), thus there is only one distinct digit slope present and a(23)=1. Also, for the 23rd permutation in the ordering A060117, [2341], there is just one drop, as p[4] = 1 < 4.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the maximal slope, while the most significant 1 is on the "sub-sub-sub-maximal", thus there are two occupied slopes in total, and a(29) = 2. In the 29th permutation of A060117, [23154], there are two drops as p[3] = 1 < 3 and p[5] = 4 < 5.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the submaximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus there are three occupied slopes in total, and a(37) = 3. In the 37th permutation of A060117, [51324], there are three drops at indices 2, 4 and 5.
		

Crossrefs

Cf. A007489 (positions of records, the first occurrence of each n).
Cf. A276001, A276002, A276003 (positions where a(n) obtains values 1, 2, 3).

Programs

  • Maple
    # The following program follows the original 2001 interpretation of this sequence:
    A060502 := n -> avg(Perm2SiteSwap3(PermUnrank3R(n)));
    with(group);
    permul := (a, b) -> mulperms(b, a);
    # factorial_base(n) gives the digits of A007623(n) as a list, uncorrupted even when there are digits > 9:
    factorial_base := proc(nn) local n, a, d, j, f; n := nn; if(0 = n) then RETURN([0]); fi; a := []; f := 1; j := 2; while(n > 0) do d := floor(`mod`(n, (j*f))/f); a := [d, op(a)]; n := n - (d*f); f := j*f; j := j+1; od; RETURN(a); end;
    # PermUnrank3R(r) gives the permutation with rank r in list A060117:
    PermUnrank3R := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Raux(n+1, r, []), 'permlist', 1+(((r+2) mod (r+1))*n)); end;
    PermUnrank3Raux := proc(n, r, p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Raux(n-1, r-(s*((n-1)!)), permul(p, [[n, n-s]]))); fi; end;
    Perm2SiteSwap3 := proc(p) local ip,n,i,a; n := nops(p); ip := convert(invperm(convert(p,'disjcyc')),'permlist',n); a := []; for i from 1 to n do if(0 = ((ip[i]-i) mod n)) then a := [op(a),0]; else a := [op(a), n-((ip[i]-i) mod n)]; fi; od; RETURN(a); end;
    avg := a -> (convert(a, `+`)/nops(a));

Formula

From Antti Karttunen, Aug 11-21 2016: (Start)
The following formula reflects the original definition of computing the average, with a few unnecessary steps eliminated:
a(n) = 1/s * Sum_{i=1..s} ((p[i]-i) modulo s), where p is the permutation of rank n as ordered in the list A060117, and s is its size (the number of its elements) computed as s = 1+A084558(n).
a(n) = Sum_{i=1..s} [p[i]
a(n) = 1/s * Sum_{i=1..s} ((i-p[i]) modulo s). [If inverse permutations from list A060118 are used, then we just flip the order of difference that is used in the first formula].
Following formulas do not need intermediate construction of permutation lists:
a(n) = A001221(A275734(n)).
a(n) = A275806(A225901(n)).
a(n) = A000120(A276010(n)).
Other identities and observations. For all n >= 0:
a(n) = A275946(n) + A275947(n).
a(n) = A060500(A060125(n)).
a(n) = A060128(n) + A276004(n).
a(n) = A060129(n) - A060500(n).
a(n) = A084558(n) - A275849(n) = 1 + A084558(n) - A060501(n).
a(A007489(n)) = n. [Particularly, A007489(n) gives the position of the first occurrence of each n.]
A060128(n) <= a(n) <= A060129(n).
a(n!) = 1.
a(A033312(n)) = 1 for all n > 1.
a(A059590(n)) = A000120(n).
a(A060112(n)) = A007895(n).
a(n) = a(A153880(n)) = a(A255411(n)). [The shift-operations do not change the number of distinct slopes.]
a(A275804(n)) = A060130(A275804(n)). [A275804 gives all the positions where this coincides with A060130.]
(End)

Extensions

Entry revised, with a new interpretation and formulas. Maple-code cleaned up. - Antti Karttunen, Aug 11 2016
Another new interpretation added and the original definition moved to the comments - Antti Karttunen, Aug 24 2016

A275734 Prime-factorization representations of "factorial base slope polynomials": a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).

Original entry on oeis.org

1, 2, 3, 6, 2, 4, 5, 10, 15, 30, 10, 20, 3, 6, 9, 18, 6, 12, 2, 4, 6, 12, 4, 8, 7, 14, 21, 42, 14, 28, 35, 70, 105, 210, 70, 140, 21, 42, 63, 126, 42, 84, 14, 28, 42, 84, 28, 56, 5, 10, 15, 30, 10, 20, 25, 50, 75, 150, 50, 100, 15, 30, 45, 90, 30, 60, 10, 20, 30, 60, 20, 40, 3, 6, 9, 18, 6, 12, 15, 30, 45, 90, 30, 60, 9, 18, 27
Offset: 0

Author

Antti Karttunen, Aug 08 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of nonzero digits that occur on the slope (k-1) levels below the "maximal slope" in the factorial base representation of n. See A275811 for the definition of the "digit slopes" in this context.

Examples

			For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus a(23) = prime(1)^3 = 2^3 = 8.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus a(29) = prime(1)^2 * prime(4)^1 = 2*7 = 28.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus a(37) = prime(1) * prime(2) * prime(4) = 2*3*7 = 42.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus a(55) = prime(1)^1 * prime(3)^2 = 2*25 = 50.
		

Crossrefs

Cf. A275811.
Cf. A275804 (indices of squarefree terms), A275805 (of terms not squarefree).
Cf. also A275725, A275733, A275735, A276076 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

  • Python
    from operator import mul
    from sympy import prime, factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum(int(y[i])*f(i + 1) for i in range(len(y))) def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).
Other identities and observations. For all n >= 0:
a(n) = A275735(A225901(n)).
a(A007489(n)) = A002110(n).
A001221(a(n)) = A060502(n).
A001222(a(n)) = A060130(n).
A007814(a(n)) = A260736(n).
A051903(a(n)) = A275811(n).
A048675(a(n)) = A275728(n).
A248663(a(n)) = A275808(n).
A056169(a(n)) = A275946(n).
A056170(a(n)) = A275947(n).
A275812(a(n)) = A275962(n).

A275735 Prime-factorization representations of "factorial base level polynomials": a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 5, 10, 10, 20, 15, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 10, 20, 20, 40, 30, 60, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 15, 30, 30, 60, 45, 90, 5, 10, 10, 20, 15, 30, 10, 20, 20, 40, 30, 60, 15, 30, 30, 60, 45, 90, 25, 50, 50, 100, 75
Offset: 0

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the factorial base representation of n. See the examples.

Examples

			For n = 0 whose factorial base representation (A007623) is also 0, there are no nonzero digits at all, thus there cannot be any prime present in the encoding, and a(0) = 1.
For n = 1 there is just one 1, thus a(1) = prime(1) = 2.
For n = 2 ("10"), there is just one 1-digit, thus a(2) = prime(1) = 2.
For n = 3 ("11") there are two 1-digits, thus a(3) = prime(1)^2 = 4.
For n = 18 ("300") there is just one 3, thus a(18) = prime(3) = 5.
For n = 19 ("301") there is one 1 and one 3, thus a(19) = prime(1)*prime(3) = 2*5 = 10.
For n = 141 ("10311") there are three 1's and one 3, thus a(141) = prime(1)^3 * prime(3) = 2^3 * 5^1 = 40.
		

Crossrefs

Cf. also A275725, A275733, A275734 for other such prime factorization encodings of A060117/A060118-related polynomials, and also A276076.
Differs from A227154 for the first time at n=18, where a(18) = 5, while A227154(18) = 4.

Programs

  • PARI
    A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A275735(n) = A181819(A276076(n)); \\ Antti Karttunen, Apr 03 2022
  • Python
    from sympy import prime
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n

Formula

a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).
Other identities and observations. For all n >= 0:
a(n) = A275734(A225901(n)).
A001221(a(n)) = A275806(n).
A001222(a(n)) = A060130(n).
A048675(a(n)) = A275729(n).
A051903(a(n)) = A264990(n).
A008683(a(A265349(n))) = -1 or +1 for all n >= 0.
A008683(a(A265350(n))) = 0 for all n >= 1.
From Antti Karttunen, Apr 03 2022: (Start)
A342001(a(n)) = A351954(n).
a(n) = A181819(A276076(n)). (End)

A257511 Number of 1's in factorial base representation of n (A007623).

Original entry on oeis.org

0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1
Offset: 0

Author

Antti Karttunen, Apr 27 2015

Keywords

Crossrefs

Cf. A255411 (numbers n such that a(n) = 0), A255341 (such that a(n) = 1), A255342 (such that a(n) = 2), A255343 (such that a(n) = 3).
Positions of records: A007489.
Cf. also A257510.

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++]; m = n; len = i; dList = Table[0, {len}]; Do[currDigit = 0; While[m >= j!, m = m - j!; currDigit++]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; s = Table[FromDigits[factBaseIntDs@ n], {n, 0, 120}];
    First@ DigitCount[#] & /@ s (* Michael De Vlieger, Apr 27 2015, after Alonso del Arte at A007623 *)
    nn = 120; b = Module[{m = 1}, While[Factorial@ m < nn, m++]; MixedRadix[Reverse@ Range[2, m]]]; Table[Count[IntegerDigits[n, b], 1], {n, 0, nn}] (* Michael De Vlieger, Aug 29 2016, Version 10.2 *)
  • Scheme
    (define (A257511 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (floor->exact (/ n i)) (+ 1 i) (+ s (if (= 1 (modulo n i)) 1 0)))))))

Formula

a(0) = 0; for n >= 1, a(n) = A265333(n) + a(A257687(n)). - Antti Karttunen, Aug 29 2016
Other identities and observations. For all n >= 0:
a(n) = A260736(A225901(n)).
a(n) = A001221(A275732(n)) = A001222(A275732(n)).
a(n) = A007814(A275735(n)).
a(n) = A056169(A276076(n)).
a(A007489(n)) = n. [Particularly, A007489(n) gives the position where n first appears.]
a(n) <= A060130(n) <= A034968(n).

A276091 Numbers obtained by reinterpreting base-2 representation of n in A001563-base (A276326): a(n) = Sum_{k>=0} A030308(n,k)*A001563(k+1).

Original entry on oeis.org

0, 1, 4, 5, 18, 19, 22, 23, 96, 97, 100, 101, 114, 115, 118, 119, 600, 601, 604, 605, 618, 619, 622, 623, 696, 697, 700, 701, 714, 715, 718, 719, 4320, 4321, 4324, 4325, 4338, 4339, 4342, 4343, 4416, 4417, 4420, 4421, 4434, 4435, 4438, 4439, 4920, 4921, 4924, 4925, 4938, 4939, 4942, 4943, 5016, 5017, 5020, 5021, 5034, 5035, 5038, 5039, 35280, 35281
Offset: 0

Author

Antti Karttunen, Aug 19 2016

Keywords

Comments

Numbers that are sums of distinct terms of A001563.
A number is included if and only if all the nonzero digits in its factorial base representation (A007623) are maximal allowed in those digit positions, thus this sequence gives all numbers n for which A060130(n) = A260736(n).
Numbers n for which A276328(n) = A276337(n), thus from 1 onward the positions of ones in A276336.
Conjectured also to give all numbers n for which A255411(n) = A276340(n) (thus zeros of A276339).

Programs

  • Mathematica
    Table[Total[Times @@@ Transpose@ {Map[# #! &, Range@ Length@ #], Reverse@ #}] &@ IntegerDigits[n, 2], {n, 64}] (* Michael De Vlieger, Aug 31 2016 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==0 else sum(int(y[i])*f(i + 1) for i in range(len(y))) def a(n): return 0 if n==0 else a255411(a(n//2)) if n%2==0 else 1 + a255411(a((n - 1)//2)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017

  • Scheme
    ;; This is a standalone program:
    (define (A276091 n) (let loop ((n n) (s 0) (f 1) (i 2)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) s (* i f) (+ 1 i))) (else (loop (/ (- n 1) 2) (+ s (* (- i 1) f)) (* i f) (+ 1 i))))))
    ;; This implements one of the given recurrences:
    (definec (A276091 n) (cond ((zero? n) n) ((even? n) (A255411 (A276091 (/ n 2)))) (else (+ 1 (A255411 (A276091 (/ (- n 1) 2)))))))
    ;; Alternatively, we can use A276340 in place of A255411:
    (definec (A276091 n) (cond ((zero? n) n) ((even? n) (A276340 (A276091 (/ n 2)))) (else (+ 1 (A276340 (A276091 (/ (- n 1) 2)))))))
    

Formula

a(0) = 0, a(2n) = A255411(a(n)), a(2n+1) = 1+A255411(a(n)).
a(0) = 0, a(2n) = A276340(a(n)), a(2n+1) = 1+A276340(a(n)).
Other identities. For all n >= 0:
a(n) = A225901(A059590(n)).
a(n) = A276090(A275959(n)).
A276328(a(n)) = A276337(a(n)) = A000120(n).

Extensions

Name changed (to emphasize the functional nature of the sequence) with the original definition moved to the comments by Antti Karttunen, Sep 01 2016
Previous Showing 21-30 of 58 results. Next