cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A384472 a(n) = Sum_{k=0..n} binomial(n,k)^3 * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k).

Original entry on oeis.org

1, 2, 22, 558, 25506, 1770300, 166190354, 19647687682, 2798281247682, 466166725448544, 88942246964278060, 19127775950813311232, 4578817457796314714502, 1207681779462031251096888, 348018457509475159702959174, 108798555057988053563408904750, 36676526343321856806298038370210
Offset: 0

Views

Author

Vaclav Kotesovec, May 30 2025

Keywords

Comments

In general, for m > 1, Sum_{k=0..n} binomial(n,k)^m * Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) ~ 2^((m+1)*n + (m-1)/2) * n^(n-(m+1)/2) / (sqrt(m-1) * Pi^((m+1)/2) * (1-w) * exp(n) * (2-w)^n * w^n), where w = -LambertW(-2*exp(-2)) = -A226775.

Crossrefs

Cf. A187655 (m=0), A187657 (m=1), A384471 (m=2), A384470.
Cf. A226775.

Programs

  • Mathematica
    Table[Sum[StirlingS2[2*k, k]*StirlingS2[2*n-2*k, n-k]*Binomial[n, k]^3, {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 2^(4*n + 1/2) * n^(n-2) / (Pi^2 * (1-w) * exp(n) * (2-w)^n * w^n), where w = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599...

A220955 O.g.f.: Sum_{n>=0} (2*n+1)^(2*n+1) * exp(-(2*n+1)^2*x) * x^n / n!.

Original entry on oeis.org

1, 26, 1320, 99288, 9901920, 1230768704, 183260197120, 31800433551744, 6301891570411008, 1404224096732154880, 347532097449969496064, 94584986134590717358080, 28076463606243146379018240, 9027122730610037995425792000, 3125219575155651450096795648000
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2013

Keywords

Comments

From Vaclav Kotesovec, May 13 2014: (Start)
Generally, for p>1, a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (p*k+1)^(p*n+1) = Sum_{k=0..(p-1)*n+1} p^(n+k) * binomial(p*n+1,n+k) * stirling2(n+k,n).
a(n) ~ n^(n*p-n+1/2) * p^(2*p*n+2+1/p) / (sqrt(2*Pi*(1-r)) * exp((p-1)*n) * r^(n+1/p) * (p-r)^(n*p-n+1)), where r = -LambertW(-p*exp(-p)).
(End)

Examples

			O.g.f.: A(x) = 1 + 26*x + 1320*x^2 + 99288*x^3 + 9901920*x^4 +...
where A(x) = exp(-x) + 3^3*exp(-3^2*x)*x + 5^5*exp(-5^2*x)*x^2/2! + 7^7*exp(-7^2*x)*x^3/3! + 9^9*exp(-9^2*x)*x^4/4! + 11^11*exp(-11^2*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[1/n! * Sum[(-1)^(n-k)*Binomial[n,k] * (2*k+1)^(2*n+1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
    Table[Sum[Binomial[2*n+1,n+k]*2^(n+k)*StirlingS2[n+k,n],{k,0,n+1}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (2*k+1)^(2*k+1)*exp(-(2*k+1)^2*x +x*O(x^n))*x^k/k!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, (2*k+1)^(2*k+1)*x^k/(1+(2*k+1)^2*x +x*O(x^n))^(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(2*k+1)^(2*n+1))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = 1/n! * [x^n] Sum_{k>=0} (2*k+1)^(2*k+1) * x^k / (1 + (2*k+1)^2*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (2*k+1)^(2*n+1).
a(n) = Sum_{k=0..n+1} 2^(n+k) * binomial(2*n+1,n+k) * stirling2(n+k,n). - Vaclav Kotesovec, May 13 2014
a(n) ~ n^(n+1/2) * 2^(4*n+5/2) / (sqrt(2*Pi*(1-r)) * exp(n) * r^(n+1/2) * (2-r)^(n+1)), where r = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775 = -r) . - Vaclav Kotesovec, May 13 2014

A247238 a(n) = Stirling2(2*n+1, n).

Original entry on oeis.org

1, 15, 301, 7770, 246730, 9321312, 408741333, 20415995028, 1144614626805, 71187132291275, 4864251308951100, 362262620784874680, 29206898819153109600, 2534474684137526739000, 235535731151727520125765, 23339590705557273894321960
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 28 2014

Keywords

Examples

			O.g.f.: A(x) = x + 15*x^2 + 301*x^3 + 7770*x^4 + 246730*x^5 + 9321312*x^6 + ... where A(x) = 1^3*x*exp(-1^2*x) + 2^5*exp(-2^2*x)*x^2/2! + 3^7*exp(-3^2*x)*x^3/3! + 4^9*exp(-4^2*x)*x^4/4! + 5^11*exp(-5^2*x)*x^5/5! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[2*n+1, n], {n, 1, 20}] (* Vaclav Kotesovec, Nov 29 2014 *)
  • PARI
    vector(50, n, stirling(2*n+1, n, 2)) \\ Colin Barker, Nov 28 2014

Formula

a(n) = A243227(n) / (n-1)!. - Vaclav Kotesovec, Nov 29 2014
a(n) ~ 2^(2*n+1/2) * n^(n+1/2) / (sqrt(Pi) * sqrt(1-c) * exp(n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - Vaclav Kotesovec, Nov 29 2014
O.g.f. Sum_{n>=1} n^(2*n+1) * x^n * exp(-n^2*x) / n! = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Oct 09 2023

A304861 O.g.f. A(x) satisfies: 0 = [x^n] exp( n*(n-1) * Integral 1/A(x) dx ) / A(x), for n > 0.

Original entry on oeis.org

1, 0, 2, 20, 328, 7664, 231744, 8560512, 372339840, 18593869184, 1046764673152, 65518908623360, 4510397034460160, 338534873778165760, 27505042556295458816, 2404499023598887772160, 225014884122460397678592, 22441327480906466274779136, 2376060993772932821157273600, 266169866452350363506325897216, 31451236460722731478509841711104
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2018

Keywords

Comments

Note: 0 = [x^n] exp( (n-1) * Integral 1/F(x) dx ) / F(x) holds for n > 0 when F(x) = sqrt(1 + x^2).
Note: 0 = [x^n] exp( n * Integral 1/G(x) dx ) / G(x) holds for n > 0 when G(x) = 1 + x.
It is remarkable that this sequence should consist entirely of integers.

Examples

			O.g.f.: A(x) = 1 + 2*x^2 + 20*x^3 + 328*x^4 + 7664*x^5 + 231744*x^6 + 8560512*x^7 + 372339840*x^8 + 18593869184*x^9 + 1046764673152*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in  exp(n*(n-1) * Integral 1/A(x) dx)/A(x) begins:
n=0: [1, 0, -2, -20, -324, -7584, -230040, -8516976, ...];
n=1: [1, 0, -2, -20, -324, -7584, -230040, -8516976, ...];
n=2: [1, 2, 0, -24, -380, -8424, -248640, -9062720, ...];
n=3: [1, 6, 16, 0, -480, -10528, -292544, -10293696, ...];
n=4: [1, 12, 70, 236, 0, -13472, -378336, -12576960, ...];
n=5: [1, 20, 198, 1260, 5176, 0, -485520, -16616864, ...];
n=6: [1, 30, 448, 4400, 31176, 151792, 0, -21316608, ...];
n=7: [1, 42, 880, 12216, 125340, 989384, 5588416, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp( n*(n-1) * Integral 1/A(x) dx ) / A(x), for n > 0.
RELATED SERIES.
1/A(x) = 1 - 2*x^2 - 20*x^3 - 324*x^4 - 7584*x^5 - 230040*x^6 - 8516976*x^7 - 371005040*x^8 - 18545507840*x^9 - 1044727771680*x^10 + ...
exp(Integral 1/A(x) dx) = 1 + 2*x/2 + 2*x^2/2^2 - 4*x^3/2^3 - 90*x^4/2^4 - 2244*x^5/2^5 - 85196*x^6/2^6 - 4372040*x^7/2^7 - 281105594*x^8/2^8 - 21659046420*x^9/2^9 + ...
exp(2 * Integral 1/A(x) dx) = 1 + 2*x + 2*x^2 - 12*x^4 - 152*x^5 - 2808*x^6 - 71040*x^7 - 2265680*x^8 - 86833824*x^9 - 3878209440*x^10 - 197532405760*x^11 + ..., an integer series.
A'(x)/A(x) = 4*x + 60*x^2 + 1304*x^3 + 38120*x^4 + 1385344*x^5 + 59770928*x^6 + 2973371104*x^7 + 167126930016*x^8 + 10457452841984*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m); for(i=1,n+1, m=#A; A=concat(A,0); A[m+1] = Vec( exp(m*(m-1)*intformal(1/Ser(A))) / Ser(A) )[m+1] );A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 2^(2*n - 2) * n^(n - 1/2) / (sqrt(Pi) * exp(n) * c^(n - 1/2) * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Oct 18 2020

A222525 O.g.f.: Sum_{n>=0} (2*n+1)^(2*n) * exp(-(2*n+1)^2*x) * x^n / n!.

Original entry on oeis.org

1, 8, 232, 12160, 929376, 93590784, 11709432064, 1751777730560, 305065968649728, 60623947402670080, 13538933075023376384, 3356940619048979988480, 915040828127405123420160, 271974910674004076827115520, 87543520972441760055430348800, 30337462571518006406505729884160
Offset: 0

Views

Author

Paul D. Hanna, Feb 24 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + 8*x + 232*x^2 + 12160*x^3 + 929376*x^4 + 93590784*x^5 +...
where
A(x) = exp(-x) + 3^2*exp(-3^2*x)*x + 5^4*exp(-5^2*x)*x^2/2! + 7^6*exp(-7^2*x)*x^3/3! + 9^8*exp(-9^2*x)*x^4/4! + 11^10*exp(-11^2*x)*x^5/5! +...
is a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[1/n!*Sum[(-1)^(n-k)*Binomial[n,k]*(2*k+1)^(2*n),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
    Table[Sum[2^k*Binomial[2*n,k]*StirlingS2[k,n],{k,n,2*n}],{n,0,20}] (* Vaclav Kotesovec, May 13 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (2*k+1)^(2*k)*exp(-(2*k+1)^2*x +x*O(x^n))*x^k/k!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, (2*k+1)^(2*k)*x^k/(1+(2*k+1)^2*x +x*O(x^n))^(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(2*k+1)^(2*n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = 1/n! * [x^n] Sum_{k>=0} (2*k+1)^(2*k) * x^k / (1 + (2*k+1)^2*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * (2*k+1)^(2*n).
a(n) = Sum_{k=0..n} 2^(n+k) * binomial(2*n,n+k) * stirling2(n+k,n). - Vaclav Kotesovec, May 13 2014
a(n) ~ 2^(4*n) * n^(n-1/2) / (sqrt(Pi*r*(1-r)) * exp(n) * (r*(2-r))^n), where r = -LambertW(-2*exp(-2)) = 0.4063757399599... (see A226775 = -r). - Vaclav Kotesovec, May 13 2014

A238258 Decimal expansion of a constant related to A002465.

Original entry on oeis.org

3, 0, 8, 8, 2, 7, 7, 3, 0, 4, 7, 4, 1, 7, 4, 0, 1, 7, 9, 1, 1, 5, 8, 4, 0, 0, 8, 2, 0, 2, 5, 4, 3, 8, 2, 7, 6, 8, 3, 6, 4, 4, 4, 8, 9, 7, 1, 4, 2, 0, 1, 3, 8, 7, 6, 7, 2, 4, 7, 7, 3, 0, 1, 2, 1, 7, 6, 5, 1, 6, 8, 1, 2, 7, 8, 8, 2, 6, 6, 6, 6, 9, 5, 2, 0, 3, 2, 7, 1, 1, 3, 0, 9, 6, 1, 9, 4, 6, 0, 0, 9, 7, 3, 0, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			3.08827730474174017911584...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-2/LambertW[-2/E^2]/(2+LambertW[-2/E^2]), 105]][[1]]

Formula

Equals lim n->infinity (A002465(n)/(n-1)!)^(1/n).
Equals -2 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))).
Equals -2 / (A226775 * (2 + A226775)).

A258467 Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order.

Original entry on oeis.org

1, 2, 12, 130, 2216, 52078, 1558219, 56524414, 2406802476, 117575627562, 6478447651345, 397345158550386, 26842747368209994, 1980156804133210116, 158365138356099680582, 13647670818304698139989, 1260732993182758276252088, 124273946254095006307105363
Offset: 0

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(2*n, n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)

Formula

a(n) = A256130(2n,n).
a(n) ~ 2^(2*n-1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^n), where c = -A226775 = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 31 2015
a(n) ~ Stirling2(2*n, n) = A007820(n). - Vaclav Kotesovec, Jun 01 2015

A288312 Number of endofunctions on [2n] such that the image size equals n.

Original entry on oeis.org

1, 2, 84, 10800, 2857680, 1285956000, 880599202560, 853262368358400, 1111400775560275200, 1873276460474747328000, 3967400888465895264384000, 10313998054713896966296473600, 32291970618091110826769565696000, 119851615755915509174015455948800000
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2017

Keywords

Examples

			a(1) = 2: (1,1), (2,2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=n, n!,
          `if`(k=0, 0, n*(b(n-1, k-1)+b(n-1, k)*k/(n-k))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..15);
  • Mathematica
    Table[StirlingS2[2*n, n]*(2*n)!/n!, {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2017 *)
  • PARI
    a(n)=stirling(2*n, n, 2)*n!*binomial(2*n, n); \\ Indranil Ghosh, Jul 04 2017
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(stirling2(2*n, n)*fac(n)*binomial(2*n, n))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017

Formula

a(n) = Stirling2(2*n,n) * n! * binomial(2*n,n).
a(n) = A090657(2n,n) = A101817(2n,n) = A219859(2n,n).
a(n) ~ n^(2*n - 1/2) * 2^(4*n) / (sqrt(Pi*(1-c)) * c^n * (2-c)^n * exp(2*n)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Jun 10 2017

A317343 E.g.f. A(x) satisfies: [x^n] exp(n^2*x) / A(x)^n = 0 for n >= 1.

Original entry on oeis.org

1, 1, 3, 43, 1945, 178041, 26792971, 5940440563, 1812303908913, 725818277844145, 368664266359757971, 231291789356545214331, 175516846850044015048393, 158383499766971409675254953, 167568661592262324239839114395, 205391322843896611716680298647491, 288693442696565330249751284373878881, 461220054642000786943064376254671287393
Offset: 0

Views

Author

Paul D. Hanna, Jul 26 2018

Keywords

Comments

It is remarkable that the logarithm of the e.g.f. A(x) should be an integer series.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 43*x^3/3! + 1945*x^4/4! + 178041*x^5/5! + 26792971*x^6/6! + 5940440563*x^7/7! + 1812303908913*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^2*x) / A(x)^n begins:
n=1: [1, 0, -2, -36, -1764, -167280, -25620600, -5737974480, ...];
n=2: [1, 2, 0, -88, -4160, -371328, -55329536, -12201990400, ...];
n=3: [1, 6, 30, 0, -7812, -698184, -97733304, -20791334880, ...];
n=4: [1, 12, 136, 1296, 0, -1171968, -168658176, -33909447168, ...];
n=5: [1, 20, 390, 7220, 113020, 0, -265712600, -55963975600, ...];
n=6: [1, 30, 888, 25704, 709056, 16600320, 0, -84622337280, ...];
n=7: [1, 42, 1750, 72072, 2909340, 112245672, 3684715944, 0, ...];
n=8: [1, 56, 3120, 172640, 9455488, 508540416, 26199517696, 1150524892160, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + x^2 + 6*x^3 + 74*x^4 + 1400*x^5 + 35676*x^6 + 1140328*x^7 + 43740848*x^8 + 1954336608*x^9 + 99561874080*x^10 + ... + A317344(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^2*x +x*O(x^#A)) / Ser(A)^m )[m+1]/m ); n!*A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 2^(2*n - 3/2) * n^(2*n-1) / (exp(2*n) * c^(n - 1/2) * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Aug 06 2018

A384470 a(n) = n! * Sum_{k=0..n} Stirling2(2*k,k) * Stirling2(2*n-2*k,n-k) / binomial(n,k).

Original entry on oeis.org

1, 2, 29, 1108, 82924, 10302768, 1917699552, 499332175200, 173242955039616, 77238974345915520, 43027312823342164800, 29285800226400628915200, 23913110797474508388449280, 23071378298963178620672409600, 25964692904608781751347296204800, 33711625062334209438536728660070400
Offset: 0

Views

Author

Vaclav Kotesovec, May 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[StirlingS2[2*k, k] * StirlingS2[2*n-2*k, n-k] / Binomial[n, k], {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 2^(2*n+1) * n^(2*n) / (sqrt(1-w) * exp(2*n) * (2-w)^n * w^n), where w = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599...
Previous Showing 11-20 of 47 results. Next