cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A237126 a(0)=0, a(1) = 1, a(2n) = nonludic(a(n)), a(2n+1) = ludic(a(n)+1), where ludic = A003309, nonludic = A192607.

Original entry on oeis.org

0, 1, 4, 2, 9, 7, 6, 3, 16, 25, 14, 17, 12, 13, 8, 5, 26, 61, 36, 115, 22, 47, 27, 67, 20, 41, 21, 43, 15, 23, 10, 11, 38, 119, 81, 359, 51, 179, 146, 791, 33, 91, 64, 247, 39, 121, 88, 407, 31, 83, 57, 221, 32, 89, 59, 227, 24, 53, 34, 97, 18, 29, 19, 37, 54
Offset: 0

Views

Author

Keywords

Comments

Shares with permutation A237056 the property that the other bisection consists of only ludic numbers and the other bisection of only nonludic numbers. However, instead of placing terms in those subsets in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself, so this is a kind of "deep" variant of A237056.
Alternatively, this can be viewed as yet another "entanglement permutation", where two pairs of complementary subsets of natural numbers are entangled with each other. In this case a complementary pair odd/even numbers (A005408/A005843) is entangled with a complementary pair ludic/nonludic numbers (A003309/A192607).

Examples

			a(2) = a(2*1) = nonludic(a(1)) = A192607(1) = 4.
a(3) = a(2*1+1) = ludic(a(1)+1) = A003309(1+1) = A003309(2) = 2.
a(4) = a(2*2) = nonludic(a(2)) = A192607(4) = 9.
a(5) = a(2*2+1) = ludic(a(2)+1) = A003309(4+1) = A003309(5) = 7.
		

Crossrefs

Cf. A237427 (inverse), A237056, A235491.
Similarly constructed permutations: A227413/A135141.

Programs

  • Haskell
    import Data.List (transpose)
    a237126 n = a237126_list !! n
    a237126_list = 0 : es where
       es = 1 : concat (transpose [map a192607 es, map (a003309 . (+ 1)) es])
    -- Reinhard Zumkeller, Feb 10 2014, Feb 06 2014
    
  • Mathematica
    nmax = 64;
    T = Range[2, 20 nmax];
    L = {1};
    While[Length[T] > 0, With[{k = First[T]},
         AppendTo[L, k]; T = Drop[T, {1, -1, k}]]];
    nonL = Complement[Range[Last[L]], L];
    a[n_] := a[n] = Which[
         n < 2, n,
         EvenQ[n] && a[n/2] <= Length[nonL], nonL[[a[n/2]]],
         OddQ[n] && a[(n-1)/2]+1 <= Length[L], L[[a[(n-1)/2]+1]],
         True, Print[" error: n = ", n, " size of T should be increased"]];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 10 2021, after Ray Chandler in A003309 *)
  • Scheme
    ;; With Antti Karttunen's IntSeq-library for memoizing definec-macro.
    (definec (A237126 n) (cond ((< n 2) n) ((even? n) (A192607 (A237126 (/ n 2)))) (else (A003309 (+ 1 (A237126 (/ (- n 1) 2))))))) ;; Antti Karttunen, Feb 07 2014

Formula

a(0)=0, a(1) = 1, a(2n) = nonludic(a(n)), a(2n+1) = ludic(a(n)+1), where ludic = A003309, nonludic = A192607.

A233275 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with even and odd numbers.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 14, 10, 15, 11, 9, 8, 24, 25, 26, 28, 27, 29, 20, 30, 21, 22, 18, 31, 23, 19, 17, 16, 48, 49, 50, 52, 51, 53, 56, 54, 57, 58, 40, 55, 59, 41, 60, 42, 61, 44, 36, 43, 45, 62, 46, 37, 38, 34, 63, 47, 39, 35, 33, 32, 96, 97, 98, 100
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

It seems that for all n, a(A000079(n)) = A003945(n).

Crossrefs

Inverse permutation: A233276.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233277/A233278, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=1, a(n) = 2*a(A213714(n)-1), else a(n) = 1+(2*a(A234017(n))).
a(n) = A054429(A233277(n)). [Follows from the definitions of these sequences]

A245704 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = A000040(a(n)), a(A091242(n)) = A002808(a(n)), where A000040(n) = n-th prime, A002808(n) = n-th composite number, and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomial over GF(2), respectively.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 25, 14, 18, 19, 22, 26, 33, 38, 24, 11, 28, 30, 34, 39, 49, 23, 55, 36, 20, 42, 45, 37, 50, 56, 69, 47, 35, 77, 52, 32, 60, 17, 64, 54, 70, 78, 94, 66, 51, 29, 105, 74, 48, 41, 84, 53, 27, 88, 76, 95, 106, 73, 125, 91, 72, 44, 140, 97, 100, 68, 58, 115, 75, 40
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

All the permutations A091203, A091205, A106443, A106445, A106447, A235042 share the same property that the binary representations of irreducible GF(2) polynomials (A014580) are mapped bijectively to the primes (A000040) but while they determine the mapping of corresponding reducible polynomials (A091242) to the composite numbers (A002808) by a simple multiplicative rule, this permutation employs index-recursion also in that case.

Crossrefs

Programs

Formula

a(1) = 1, after which, if A091225(n) is 1 [i.e. n is in A014580], then a(n) = A000040(a(A091226(n))), otherwise a(n) = A002808(a(A091245(n))).
As a composition of related permutations:
a(n) = A227413(A245701(n)).
a(n) = A245822(A091205(n)).
Other identities. For all n >= 1, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A091205 has the same property].
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials (= A014580) to primes and the corresponding representations of reducible polynomials to composites].

A246378 Permutation of natural numbers: a(1) = 1, a(2n) = nthcomposite(a(n)), a(2n+1) = nthprime(a(n)), where nthcomposite = A002808, nthprime = A000040.

Original entry on oeis.org

1, 4, 2, 9, 7, 6, 3, 16, 23, 14, 17, 12, 13, 8, 5, 26, 53, 35, 83, 24, 43, 27, 59, 21, 37, 22, 41, 15, 19, 10, 11, 39, 101, 75, 241, 51, 149, 114, 431, 36, 89, 62, 191, 40, 103, 82, 277, 33, 73, 54, 157, 34, 79, 58, 179, 25, 47, 30, 67, 18, 29, 20, 31, 56, 167, 134, 547, 102, 379, 304, 1523, 72, 233
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2014

Keywords

Comments

Contains an infinite number of infinite cycles. See comments at A246377.

Crossrefs

Inverse: A246377.
Similar or related permutations: A237126, A054429, A227413, A236854, A246375, A246380, A246682, A163511.

Programs

Formula

a(1) = 1, a(2n) = nthcomposite(a(n)), a(2n+1) = nthprime(a(n)), where nthcomposite = A002808, nthprime = A000040.
As a composition of related permutations:
a(n) = A227413(A054429(n)).
a(n) = A236854(A227413(n)).
a(n) = A246380(A246375(n)).
a(n) = A246682(A163511(n)). [For n >= 1].
Other identities. For all n > 1 the following holds:
A010051(a(n)) = A000035(n). [Maps odd numbers larger than one to primes, and even numbers to composites, in some order. Permutations A246380 & A246682 have the same property].

A233276 a(0)=0, a(1)=1, after which a(2n) = A005187(1+a(n)), a(2n+1) = A055938(a(n)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 11, 13, 8, 9, 10, 12, 31, 30, 26, 29, 22, 24, 25, 28, 16, 17, 18, 20, 19, 21, 23, 27, 63, 62, 57, 61, 50, 55, 56, 60, 42, 45, 47, 51, 49, 52, 54, 59, 32, 33, 34, 36, 35, 37, 39, 43, 38, 40, 41, 44, 46, 48, 53, 58, 127, 126, 120
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

For all n, a(A000079(n)) = A000225(n+1), i.e. a(2^n) = (2^(n+1))-1.
For n>=1, a(A000225(n)) = A000325(n).
This permutation is obtained by "entangling" even and odd numbers with complementary pair A005187 & A055938, meaning that it can be viewed as a binary tree. Each child to the left is obtained by applying A005187(n+1) to the parent node containing n, and each child to the right is obtained as A055938(n):
0
|
...................1...................
3 2
7......../ \........6 4......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
15 14 11 13 8 9 10 12
31 30 26 29 22 24 25 28 16 17 18 20 19 21 23 27
etc.
For n >= 1, A256991(n) gives the contents of the immediate parent node of the node containing n, while A070939(n) gives the total distance to 0 from the node containing n, with A256478(n) telling how many of the terms encountered on that journey are terms of A005187 (including the penultimate 1 but not the final 0 in the count), while A256479(n) tells how many of them are terms of A055938.
Permutation A233278 gives the mirror image of the same tree.

Crossrefs

Inverse permutation: A233275.
Cf. also A070939 (the binary width of both n and a(n)).
Related arrays: A255555, A255557.
Similarly constructed permutation pairs: A005940/A156552, A135141/A227413, A232751/A232752, A233277/A233278, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, a(2n) = A005187(1+a(n)), a(2n+1) = A055938(a(n)).
As a composition of related permutations:
a(n) = A233278(A054429(n)).

Extensions

Name changed and the illustration of binary tree added by Antti Karttunen, Apr 19 2015

A233277 Permutation of nonnegative integers obtained by entangling complementary pair A005187 & A055938 with odd and even numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 9, 13, 8, 12, 14, 15, 23, 22, 21, 19, 20, 18, 27, 17, 26, 25, 29, 16, 24, 28, 30, 31, 47, 46, 45, 43, 44, 42, 39, 41, 38, 37, 55, 40, 36, 54, 35, 53, 34, 51, 59, 52, 50, 33, 49, 58, 57, 61, 32, 48, 56, 60, 62, 63, 95, 94, 93, 91
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Crossrefs

Inverse permutation: A233278.
Similarly constructed permutation pairs: A135141/A227413, A232751/A232752, A233275/A233276, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, if A079559(n)=0, a(n) = 2*a(A234017(n)), else a(n) = 1+(2*a(A213714(n)-1)).
a(n) = A054429(A233275(n)). [Follows from the definitions of these sequences]

A233278 a(0)=0, a(1)=1, after which a(2n) = A055938(a(n)), a(2n+1) = A005187(1+a(n)).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 12, 10, 9, 8, 13, 11, 14, 15, 27, 23, 21, 19, 20, 18, 17, 16, 28, 25, 24, 22, 29, 26, 30, 31, 58, 53, 48, 46, 44, 41, 40, 38, 43, 39, 37, 35, 36, 34, 33, 32, 59, 54, 52, 49, 51, 47, 45, 42, 60, 56, 55, 50, 61, 57, 62, 63, 121, 113, 108
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

This permutation is obtained by "entangling" even and odd numbers with complementary pair A055938 & A005187, meaning that it can be viewed as a binary tree. Each child to the left is obtained by applying A055938(n) to the parent node containing n, and each child to the right is obtained as A005187(n+1):
0
|
...................1...................
2 3
5......../ \........4 6......../ \........7
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
12 10 9 8 13 11 14 15
27 23 21 19 20 18 17 16 28 25 24 22 29 26 30 31
etc.
For n >= 1, A256991(n) gives the contents of the immediate parent node of the node containing n, while A070939(n) gives the total distance to zero at the root from the node containing n, with A256478(n) telling how many of the terms encountered on that journey are terms of A005187 (including the penultimate 1 but not the final 0 in the count), while A256479(n) tells how many of them are terms of A055938.
Permutation A233276 gives the mirror image of the same tree.

Crossrefs

Inverse permutation: A233277.
Cf. also A070939 (the binary width of both n and a(n)).
Related arrays: A255555, A255557.
Similarly constructed permutation pairs: A005940/A156552, A135141/A227413, A232751/A232752, A233275/A233276, A233279/A233280, A003188/A006068.

Formula

a(0)=0, a(1)=1, and thereafter, a(2n) = A055938(a(n)), a(2n+1) = A005187(1+a(n)).
As a composition of related permutations:
a(n) = A233276(A054429(n)).

Extensions

Name changed and the illustration of binary tree added by Antti Karttunen, Apr 19 2015

A243287 a(1)=1, and for n > 1, if n is k-th number divisible by the square of its largest prime factor (i.e., n = A070003(k)), a(n) = 1 + (2*a(k)); otherwise, when n = A102750(k), a(n) = 2*a(k).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 18, 24, 64, 7, 20, 17, 36, 48, 128, 14, 40, 34, 13, 72, 33, 96, 256, 28, 80, 11, 68, 26, 144, 19, 66, 192, 512, 56, 160, 22, 136, 52, 288, 38, 132, 384, 25, 65, 1024, 112, 320, 21, 44, 272, 104, 576, 76, 264, 768, 50, 130, 37, 2048
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2014

Keywords

Comments

This is an instance of "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A070003/A102750 (numbers which are divisible/not divisible by the square of their largest prime factor) is entangled with complementary pair odd/even numbers (A005408/A005843).
Thus this shares with the permutation A122111 the property that each term of A102750 is mapped to a unique even number and likewise each term of A070003 is mapped to a unique odd number.

Crossrefs

Inverse: A243288.
Similarly constructed permutations: A243343-A243346, A135141-A227413, A237126-A237427, A193231.

Formula

a(1) = 1, and thereafter, if A241917(n) = 0 (i.e., n is a term of A070003), a(n) = 1 + (2*a(A243282(n))); otherwise a(n) = 2*a(A243285(n)) (where A243282 and A243285 give the number of integers <= n divisible/not divisible by the square of their largest prime factor).

A243343 a(1)=1; thereafter, if n is the k-th squarefree number (i.e., n = A005117(k)), a(n) = 1 + (2*a(k-1)); otherwise, when n is k-th nonsquarefree number (i.e., n = A013929(k)), a(n) = 2*a(k).

Original entry on oeis.org

1, 3, 7, 2, 15, 5, 31, 6, 14, 11, 63, 4, 13, 29, 23, 30, 127, 10, 9, 62, 27, 59, 47, 12, 28, 61, 22, 126, 255, 21, 19, 8, 125, 55, 119, 26, 95, 25, 57, 58, 123, 45, 253, 46, 60, 511, 43, 254, 20, 18, 39, 124, 17, 54, 251, 118, 111, 239, 53, 94, 191, 51, 24, 56
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This is an instance of an "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A005117/A013929 (numbers which are squarefree/not squarefree) is entangled with complementary pair odd/even numbers (A005408/A005843).
Thus this shares with permutation A243352 the property that each term of A005117 is mapped bijectively to a unique odd number and likewise each term of A013929 is mapped (bijectively) to a unique even number. However, instead of placing terms into those positions in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself.
Are there any other fixed points than 1, 13, 54, 120, 1389, 3183, ... ?

Crossrefs

Formula

a(1) = 1; thereafter, if A008966(n) = 0 (i.e., n is a term of A013929, not squarefree), a(n) = 2*a(A057627(n)); otherwise a(n) = 2*a(A013928(n+1)-1)+1 (where A057627 and A013928(n+1) give the number of integers <= n divisible/not divisible by a square greater than one).
For all n, A000035(a(n)) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) modulo 2. The same property holds for A243352.

A236854 Self-inverse permutation of natural numbers: a(1)=1, then a(p_n)=c_{a(n)}, a(c_n)=p_{a(n)}, where p_n = n-th prime, c_n = n-th composite.

Original entry on oeis.org

1, 4, 9, 2, 16, 7, 6, 23, 3, 53, 26, 17, 14, 13, 83, 5, 12, 241, 35, 101, 59, 43, 8, 41, 431, 11, 37, 1523, 75, 149, 39, 547, 277, 191, 19, 179, 27, 3001, 31, 157, 24, 12763, 22, 379, 859, 167, 114, 3943, 1787, 1153, 67, 1063, 10, 103, 27457, 127, 919, 89, 21
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2014, based on Katarzyna Matylla's original but misplaced definition for A135044 from Feb 11 2008

Keywords

Comments

Shares with A026239 the property that the prime-positions 2, 3, 5, 7, ... contain only composite values and the composite-positions 4, 6, 8, 9, ..., etc. contain only prime values. However, instead of placing terms in those subsets in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself, so this is a kind of "deep" variant of A026239. Alternatively, this can be viewed as yet another "entanglement permutation", where two pairs of complementary subsets of natural numbers are entangled with each other. In this case a complementary pair primes/composites (A000040/A002808) is entangled with a complementary pair composites/primes.
Maps A006508 to A007097 and vice versa.

Examples

			a(5)=c(a(3))=c(9)=16, because 5=prime(3), and the 9th composite number is c(9)=16.
Thus a(10)=prime(a(5))=prime(16)=53 (since 10 is the 5th composite), a(18)=prime(a(10))=prime(53)=241 (since 18 is the 10th composite), a(28)=prime(a(18))=prime(241)=1523.
A significant record value is a(198) = prime(a(152)) = prime(563167303) since 198=c(152); a(152)=prime(a(115)) since 152=c(115); a(115)=prime(a(84)); a(84)=prime(a(60)); a(60)=prime(a(42)); a(42)=prime(a(28)).
		

Crossrefs

Differs from A135044 for the first time at n=8, where A135044(8)=13, while here a(8)=23.

Programs

  • Mathematica
    terms = 150; cc = Select[Range[4, 2 terms^2(*empirical*)], CompositeQ]; compositePi[k_?CompositeQ] := FirstPosition[cc, k][[1]]; a[1] = 1; a[p_?PrimeQ] := a[p] = cc[[a[PrimePi[p]]]]; a[k_] := a[k] = Prime[a[ compositePi[k]]]; Array[a, terms] (* Jean-François Alcover, Mar 02 2016 *)
  • PARI
    A236854(n)={if(isprime(n), A002808(A236854(primepi(n))), n==1&&return(1);prime(A236854(n-primepi(n)-1)))} \\ without memoization: not much slower. - M. F. Hasler, Feb 03 2014
    
  • PARI
    a236854=vector(999);a236854[1]=1;A236854(n)={a236854[n]&&return(a236854[n]); a236854[n]=if(isprime(n), A002808(A236854(primepi(n))), prime(A236854(n-primepi(n)-1)))} \\ Version with memoization. - M. F. Hasler, Feb 03 2014
    
  • Python
    from sympy import primepi, prime, isprime
    def a002808(n):
        m, k = n, primepi(n) + 1 + n
        while m != k: m, k = k, primepi(k) + 1 + n
        return m # this function from Chai Wah Wu
    def a(n): return n if n<2 else a002808(a(primepi(n))) if isprime(n) else prime(a(n - primepi(n) - 1))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 07 2017

Formula

a(1)=1, a(p_i) = A002808(a(i)) for primes with index i, a(c_j) = A000040(a(j)) for composites with index j (where 4 has index 1, 6 has index 2, and so on).

Extensions

Values double-checked by M. F. Hasler, Feb 03 2014
Previous Showing 11-20 of 33 results. Next