cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A372851 Squarefree numbers whose prime indices are the binary indices of some prime number.

Original entry on oeis.org

3, 6, 10, 22, 30, 42, 46, 66, 70, 102, 114, 118, 130, 182, 238, 246, 266, 318, 330, 354, 370, 402, 406, 434, 442, 510, 546, 646, 654, 690, 762, 770, 798, 930, 938, 946, 962, 986, 1066, 1102, 1122, 1178, 1218, 1222, 1246, 1258, 1334, 1378, 1430, 1482, 1578
Offset: 1

Views

Author

Gus Wiseman, May 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The prime indices of 70 are {1,3,4}, which are the binary indices of 13, which is prime, so 70 is in the sequence.
The prime indices of 15 are {2,3}, which are the binary indices of 6, which is not prime, so 15 is not in the sequence.
The terms together with their prime indices begin:
    3: {2}
    6: {1,2}
   10: {1,3}
   22: {1,5}
   30: {1,2,3}
   42: {1,2,4}
   46: {1,9}
   66: {1,2,5}
   70: {1,3,4}
  102: {1,2,7}
  114: {1,2,8}
  118: {1,17}
  130: {1,3,6}
  182: {1,4,6}
  238: {1,4,7}
  246: {1,2,13}
  266: {1,4,8}
  318: {1,2,16}
  330: {1,2,3,5}
  354: {1,2,17}
  370: {1,3,12}
  402: {1,2,19}
		

Crossrefs

[Warning: do not confuse A372887 with the strict case A372687.]
For odd instead of prime we have A039956.
For even instead of prime we have A056911.
Strict partitions of this type are counted by A372687.
Non-strict partitions of this type are counted by A372688, ranks A277319.
The nonsquarefree version is A372850, counted by A372887.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A038499 counts partitions of prime length, strict A085756.
A048793 and A272020 (reverse) list binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
A058698 counts partitions of prime numbers, strict A064688.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#] && PrimeQ[Total[2^(PrimePi/@First/@FactorInteger[#]-1)]]&]

Formula

Squarefree numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the (distinct) prime indices of k.

A384868 a(n) = Sum_{i=1...|b|} i*(-1)^b_i where b is the lexicographically n-th binary string.

Original entry on oeis.org

0, 1, -1, 3, -1, 1, -3, 6, 0, 2, -4, 4, -2, 0, -6, 10, 2, 4, -4, 6, -2, 0, -8, 8, 0, 2, -6, 4, -4, -2, -10, 15, 5, 7, -3, 9, -1, 1, -9, 11, 1, 3, -7, 5, -5, -3, -13, 13, 3, 5, -5, 7, -3, -1, -11, 9, -1, 1, -9, 3, -7, -5, -15, 21, 9, 11, -1, 13, 1, 3, -9, 15, 3, 5, -7, 7, -5, -3, -15, 17
Offset: 0

Views

Author

Christopher Purcell, Jun 11 2025

Keywords

Comments

The first binary string is the empty string and is indexed n=0.

Examples

			The lexicographically 8th binary string is 001; therefore, a(8) = 1 + 2 - 3 = 0.
Sequence can be written as triangle T(n,k) with row lengths 2^n:
   0;
   1, -1;
   3, -1, 1, -3;
   6,  0, 2, -4, 4, -2, 0, -6;
  10,  2, 4, -4, 6, -2, 0, -8, 8, 0, 2, -6, 4, -4, -2, -10;
  ...
		

Crossrefs

Programs

  • PARI
    a(n) = my(b=[d|d<-binary(n+1)[^1]]); sum(i=1, #b, i*(-1)^b[i]); \\ Michel Marcus, Jun 11 2025
    
  • Python
    from math import comb
    def A384868(n): return comb(len(s:=bin(n+1)[3:])+1,2)-(sum(i for i,j in enumerate(s,1) if j=='1')<<1) # Chai Wah Wu, Jun 13 2025
    
  • Python
    def a384868(n): return sum(i if b == '0' else -i for i, b in enumerate(bin(n + 1)[3:], 1)) # David Radcliffe, Jun 15 2025

Formula

From Alois P. Heinz, Jun 13 2025: (Start)
a(A000225(n)) = A000217(n).
a(2*(2^n-1)) = (-1)*A000217(n).
Sum_{i=0..2^n-1} a(i+2^n-1) = 0.
Sum_{i=0..2^n-1} i*a(i+2^n-1) = (-1)*A100575(n+1).
Sum_{i=0..2^n-1} abs(a(i+2^n-1)) = 2*A377170(n). (End)

A359757 Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 12167, 11449, 15341, 24389, 16399, 26071, 29791, 31117, 35557, 50653, 39401, 56129, 68921, 58867, 72283, 83521, 79007, 86903, 103823
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2023

Keywords

Comments

Appears to first differ from A001248 at a(27) = 12167, A001248(27) = 10609.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    9: {2,2}
   25: {3,3}
   49: {4,4}
  121: {5,5}
  169: {6,6}
  289: {7,7}
  361: {8,8}
  529: {9,9}
  841: {10,10}
		

Crossrefs

The one-based version is A359497, minimum A359682 (sorted A359755).
Last position of n in A359674, reverse A359677.
The minimum instead of maximum is A359676, sorted A359675, reverse A359681.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124757 = zero-based weighted sum of standard compositions, reverse A231204.
A304818 gives weighted sums of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 = partial sums of prime indices, ranked by A358137, reverse A359361.

Programs

  • Mathematica
    nn=10;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[prix[n]],{n,2^nn}];
    Table[Position[seq,k][[-1,1]],{k,nn}]
  • PARI
    a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)^2),
        my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z));
      vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n,k,n)));
    } \\ Andrew Howroyd, Jan 21 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 21 2023

A359496 Nonnegative integers whose sum of positions of 1's in their binary expansion is less than the sum of positions of 1's in their reversed binary expansion, where positions in a sequence are read starting with 1 from the left.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 72, 74, 76, 80, 81, 82, 84, 86, 88, 89, 90, 92, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2023

Keywords

Comments

First differs from A161602 in lacking 70, with binary expansion (1,0,0,0,1,1,0), positions of 1's 1 + 5 + 6 = 12, reversed 2 + 3 + 7 = 12.

Examples

			The initial terms, binary expansions, and positions of 1's are:
    2:      10 ~ {2}
    4:     100 ~ {3}
    6:     110 ~ {2,3}
    8:    1000 ~ {4}
   10:    1010 ~ {2,4}
   12:    1100 ~ {3,4}
   13:    1101 ~ {1,3,4}
   14:    1110 ~ {2,3,4}
   16:   10000 ~ {5}
   18:   10010 ~ {2,5}
   20:   10100 ~ {3,5}
   22:   10110 ~ {2,3,5}
   24:   11000 ~ {4,5}
   25:   11001 ~ {1,4,5}
   26:   11010 ~ {2,4,5}
   28:   11100 ~ {3,4,5}
   29:   11101 ~ {1,3,4,5}
   30:   11110 ~ {2,3,4,5}
		

Crossrefs

The opposite version is A359401.
Indices of negative terms in A359495; indices of 0's are A359402.
A030190 gives binary expansion, reverse A030308.
A070939 counts binary digits.
A230877 adds up positions of 1's in binary expansion, reverse A029931.
A326669 lists numbers with integer mean position of a 1 in binary expansion.
A358194 counts partitions by sum of partial sums, compositions A053632.

Programs

  • Mathematica
    Select[Range[100],Total[Accumulate[IntegerDigits[#,2]]]>Total[Accumulate[Reverse[IntegerDigits[#,2]]]]&]

Formula

A230877(a(n)) < A029931(a(n)).

A373120 Number of distinct possible binary ranks of integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 33, 43, 55, 70, 89, 109, 136, 167, 206, 251, 306, 371, 445, 535, 639, 759, 904, 1069, 1262, 1489, 1747, 2047, 2390, 2784, 3237, 3754, 4350, 5027, 5798, 6680, 7671, 8808, 10091, 11543, 13190, 15040, 17128, 19477, 22118
Offset: 0

Views

Author

Gus Wiseman, May 26 2024

Keywords

Examples

			The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4, so a(4) = 3.
		

Crossrefs

The strict case is A000009.
A048675 gives binary rank of prime indices, distinct A087207.
A118462 lists binary ranks of strict integer partitions, row sums A372888.
A277905 groups all positive integers by binary rank of prime indices.
A372890 adds up binary ranks of integer partitions.
Binary indices (A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- max A029837 or A070939, opposite A070940
- sum A029931, product A096111
- reverse A272020
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Mathematica
    Table[Length[Union[Total[2^(#-1)]&/@IntegerPartitions[n]]],{n,0,15}]
Previous Showing 21-25 of 25 results.