cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A351594 Number of odd-length integer partitions y of n that are alternately constant, meaning y_i = y_{i+1} for all odd i.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 4, 2, 7, 3, 9, 4, 13, 6, 19, 6, 26, 10, 35, 12, 49, 16, 64, 20, 87, 27, 115, 32, 151, 44, 195, 53, 256, 69, 328, 84, 421, 108, 537, 130, 682, 167, 859, 202, 1085, 252, 1354, 305, 1694, 380, 2104, 456, 2609, 564, 3218, 676, 3968, 826, 4863
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

These are partitions with all even run-lengths except for the last, which is odd.

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)    (7)        (8)    (9)
            (111)       (221)    (222)  (331)      (332)  (333)
                        (11111)         (22111)           (441)
                                        (1111111)         (22221)
                                                          (33111)
                                                          (2211111)
                                                          (111111111)
		

Crossrefs

The ordered version (compositions) is A016116 shifted right once.
All odd-length partitions are counted by A027193.
The opposite version is A117409, even-length A351012, any length A351003.
Replacing equal with unequal relations appears to give:
- any length: A122129
- odd length: A122130
- even length: A351008
- opposite any length: A122135
- opposite odd length: A351595
- opposite even length: A122134
This is the odd-length case of A351004, even-length A035363.
The case that is also strict at even indices is:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
A reverse version is A096441; see also A349060.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A346634 Number of strict odd-length integer partitions of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2021

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  (1)  (3)  (5)  (7)      (9)      (11)     (13)      (15)
                 (4,2,1)  (4,3,2)  (5,4,2)  (6,4,3)   (6,5,4)
                          (5,3,1)  (6,3,2)  (6,5,2)   (7,5,3)
                          (6,2,1)  (6,4,1)  (7,4,2)   (7,6,2)
                                   (7,3,1)  (7,5,1)   (8,4,3)
                                   (8,2,1)  (8,3,2)   (8,5,2)
                                            (8,4,1)   (8,6,1)
                                            (9,3,1)   (9,4,2)
                                            (10,2,1)  (9,5,1)
                                                      (10,3,2)
                                                      (10,4,1)
                                                      (11,3,1)
                                                      (12,2,1)
                                                      (5,4,3,2,1)
		

Crossrefs

Odd bisection of A067659, which is ranked by A030059.
The even version is the even bisection of A067661.
The case of all odd parts is counted by A069911 (non-strict: A078408).
The non-strict version is A160786, ranked by A340931.
The non-strict even version is A236913, ranked by A340784.
The even-length version is A343942 (non-strict: A236914).
The even-sum version is A344650 (non-strict: A236559 or A344611).
A000009 counts partitions with all odd parts, ranked by A066208.
A000009 counts strict partitions, ranked by A005117.
A027193 counts odd-length partitions, ranked by A026424.
A027193 counts odd-maximum partitions, ranked by A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A340385 counts partitions with odd length and maximum, ranked by A340386.
Other cases of odd length:
- A024429 set partitions
- A089677 ordered set partitions
- A166444 compositions
- A174726 ordered factorizations
- A332304 strict compositions
- A339890 factorizations

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(2*n+1$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Aug 05 2021

A348384 Heinz numbers of integer partitions whose length is 2/3 their sum.

Original entry on oeis.org

1, 6, 36, 40, 216, 224, 240, 1296, 1344, 1408, 1440, 1600, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 34816, 39936, 46656, 48384, 50176, 50688, 51840, 53760, 56320, 57600, 64000, 155648, 208896, 239616, 266240, 279936, 290304, 301056, 304128, 311040, 315392
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose sum of prime indices is 3/2 their number. Counting the partitions with these Heinz numbers gives A035377(n) = A000041(n/3) if n is a multiple of 3, otherwise 0.

Examples

			The terms and their prime indices begin:
     1: {}
     6: {1,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
   216: {1,1,1,2,2,2}
   224: {1,1,1,1,1,4}
   240: {1,1,1,1,2,3}
  1296: {1,1,1,1,2,2,2,2}
  1344: {1,1,1,1,1,1,2,4}
  1408: {1,1,1,1,1,1,1,5}
  1440: {1,1,1,1,1,2,2,3}
  1600: {1,1,1,1,1,1,3,3}
  6656: {1,1,1,1,1,1,1,1,1,6}
  7776: {1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

These partitions are counted by A035377.
Rounding down gives A348550 or A347452, counted by A108711 or A119620.
A000041 counts integer partitions.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime factors.

Programs

  • Mathematica
    Select[Range[1000],2*Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ Antti Karttunen, Nov 22 2021

Formula

The sequence contains n iff A056239(n) = 3*A001222(n)/2. Here, A056239 adds up prime indices, while A001222 counts them with multiplicity.
Intersection of A028260 and A347452.

A318155 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(k*(2*k+1)) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 22, 28, 35, 44, 55, 68, 84, 103, 126, 153, 185, 223, 268, 320, 381, 452, 535, 631, 742, 870, 1018, 1188, 1383, 1607, 1863, 2155, 2489, 2869, 3301, 3792, 4348, 4978, 5691, 6496, 7404, 8428, 9580, 10875, 12330, 13962, 15791, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067661.
From Gus Wiseman, Jul 29 2021: (Start)
Also the number of strict integer partitions of 2n+1 of odd length with exactly one odd part. For example, the a(1) = 1 through a(7) = 10 partitions are:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(6,2,1) (6,3,2) (6,5,2) (7,6,2)
(6,4,1) (7,4,2) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(10,2,1) (9,4,2)
(10,3,2)
(10,4,1)
(12,2,1)
The following relate to these partitions:
- Not requiring odd length gives A036469.
- The non-strict version is A304620.
- The version for even instead of odd length is A318156.
- Allowing any number of odd parts gives A346634 (bisection of A067659).
(End)

Crossrefs

First differences are A067661 (non-strict: A027187, odd bisection: A343942).
A000041 counts partitions.
A000070 counts partitions with alternating sum 1.
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k + 1))/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] + QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 29 2021 *)

Formula

a(n) = A036469(n) - A318156(n).
a(n) = A318156(n) + A078616(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A341448 Heinz numbers of integer partitions of type OO.

Original entry on oeis.org

6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2021

Keywords

Comments

These partitions are defined to have an odd number of odd parts and an odd number of even parts. They also have even length and odd sum.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      6: (2,1)         74: (12,1)           141: (15,2)
     14: (4,1)         77: (5,4)            142: (20,1)
     15: (3,2)         86: (14,1)           143: (6,5)
     24: (2,1,1,1)     93: (11,2)           145: (10,3)
     26: (6,1)         95: (8,3)            150: (3,3,2,1)
     33: (5,2)         96: (2,1,1,1,1,1)    152: (8,1,1,1)
     35: (4,3)        104: (6,1,1,1)        158: (22,1)
     38: (8,1)        106: (16,1)           161: (9,4)
     51: (7,2)        119: (7,4)            177: (17,2)
     54: (2,2,2,1)    122: (18,1)           178: (24,1)
     56: (4,1,1,1)    123: (13,2)           185: (12,3)
     58: (10,1)       126: (4,2,2,1)        201: (19,2)
     60: (3,2,1,1)    132: (5,2,1,1)        202: (26,1)
     65: (6,3)        135: (3,2,2,2)        204: (7,2,1,1)
     69: (9,2)        140: (4,3,1,1)        209: (8,5)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by A078408 (A300272).
The type EE version is A236913 (A340784).
These partitions (for odd n) are counted by A236914.
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd (A340932).
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A160786 counts odd-length partitions of odd numbers (A340931).
A340101 counts factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
Previous Showing 31-35 of 35 results.