cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A242262 Semiprimes of the form k^3 - 1.

Original entry on oeis.org

26, 215, 511, 1727, 2743, 7999, 13823, 54871, 157463, 238327, 511999, 728999, 1330999, 2628071, 3374999, 4410943, 4741631, 7077887, 7301383, 20123647, 21484951, 30959143, 36594367, 42144191, 63044791, 64964807, 81746503, 124999999, 187149247, 264609287, 267089983
Offset: 1

Views

Author

K. D. Bajpai, May 09 2014

Keywords

Comments

From Jianing Song, Aug 01 2018: (Start)
k^3 - 1 is a term iff k - 1 and k^2 + k + 1 are both prime.
Is this sequence infinite? That is, are there infinitely many primes p such that p^2 + 3*p + 3 is also prime?
(End)

Examples

			a(1) = 26 = 3^3 - 1 = 26 = 2 * 13, is a semiprime.
a(2) = 215 = 6^3 - 1 = 215 = 5 * 43, is a semiprime.
		

Crossrefs

Cf. A237040 (semiprimes of the form k^3 + 1).

Programs

  • Maple
    with(numtheory): A242262:= proc() local k; k:= x^3-1; if bigomega(k) = 2  then RETURN (k); fi; end: seq(A242262 (),x=1..1000);
  • Mathematica
    Select[Table[n^3 - 1, {n, 100}], PrimeOmega[#] == 2 &]
    Select[Range[700]^3-1,PrimeOmega[#]==2&] (* Harvey P. Dale, Jan 25 2019 *)

Formula

a(n) = A096175(n-1)^3 - 1 for n > 1. - Jianing Song, Aug 01 2018

Extensions

First Mathematica program corrected by Harvey P. Dale, Jan 25 2019

A237117 Remainder mod p of the smallest semiprime of the form k^p+1, where p = prime(n); or -1 if no such semiprime exists.

Original entry on oeis.org

0, 0, 3, 3, 3, 3, 3, 3, 3, 24, 3, 17, 26, 3, 7, 11, 7, 3, 11, 47, 19, 3, 5, 17, 71, 3, 97, 7, 13, 32, 3, 97, 67, 31, 17, 48, 23, 53, 3, 17, 157, 108, 3, 13, 53, 3, 67, 47, 23, 97, 88, 127, 106, 17, 37, 97, 145, 89, 73, 53, 173, 11, 17, 106, 3, 17, 47, 323, 3, 112, 23, 314, 37, 29, 331, 174, 266, 194, 226, 397, 29, 16, 176, 45, 44, 152, 373, 349, 101, 143, 53, 386, 133, 29, 345, 1
Offset: 1

Views

Author

Jonathan Sondow, Feb 06 2014

Keywords

Comments

It appears that a(n) > 0 for all n > 2. See the comments in A237114.

Examples

			Prime(2)=3 and the smallest semiprime of the form k^3+1 is 2^3+1 = 9 = 3*3, so a(2) = 9 mod 3 = 0.
Prime(3)=5 and the smallest semiprime of the form k^5+1 is 2^5+1 = 33 = 3*11, so a(3) = 33 mod 5 = 3.
		

Crossrefs

Programs

  • Mathematica
    L = {0}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, Mod[q^p + 1, p]], {k, 2, 87}]; L

Formula

a(n) = A237114(n) mod prime(n) = A237115(n) mod prime(n), if A237114(n)>0.

A259189 Semiprimes of the form n^3 + 2.

Original entry on oeis.org

10, 218, 514, 731, 1333, 2199, 2746, 3377, 4915, 5834, 6861, 8002, 9263, 12169, 15627, 29793, 35939, 42877, 54874, 59321, 68923, 117651, 125002, 132653, 148879, 185195, 205381, 314434, 405226, 421877, 474554, 531443, 592706, 658505, 704971
Offset: 1

Views

Author

Morris Neene, Jun 20 2015

Keywords

Comments

Intersection of A001358 and A084380. - Michel Marcus, Jun 20 2015
Since there are no squares of the form n^3 + 2, all semiprimes in this sequence are products of distinct primes.
No term in A040034 divides any term in this sequence.

Crossrefs

Cf. A001358 (semiprimes), A084380 (n^3+2), A144953 (primes of same form).
Cf. A237040 (similar sequence with n^3+1).

Programs

  • Magma
    IsSP:=func;[r:n in [1..1000]|IsSP(r) where r is 2+n^3];
    
  • Mathematica
    Select[Range[100]^3 + 2, PrimeOmega[#] == 2 &] (* Alonso del Arte, Jun 20 2015 *)
  • PARI
    is(n)=bigomega(n^3 + 2)==2 \\ Anders Hellström, Sep 07 2015
  • Perl
    use ntheory ":all"; my @sp = grep { scalar(factor($))==2 } map { $**3+2 } 1..100; say "@sp"; # Dana Jacobsen, Sep 07 2015
    
Previous Showing 11-13 of 13 results.