cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A239667 Sum of the largest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 17, 84, 262, 629, 1289, 2370, 4014, 6393, 9703, 14150, 19974, 27439, 36815, 48410, 62556, 79587, 99879, 123832, 151844, 184359, 221845, 264764, 313628, 368973, 431325, 501264, 579394, 666305, 762645, 869086, 986282, 1114949, 1255827, 1409634, 1577154, 1759195, 1956539, 2170038, 2400568
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 23 2014

Keywords

Examples

			Add the numbers in the first column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               17             84             262        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,17,84,262,629,1289,2370,4014,6393]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[-(9*x^6 + 32*x^5 + 50*x^4 + 58*x^3 + 36*x^2 + 14*x +
    1)/((x - 1)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 13 2014 *)
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 17, 84, 262, 629, 1289, 2370, 4014, 6393}, 50](* Vincenzo Librandi, Aug 29 2015 *)
    Table[Total[IntegerPartitions[4 n,{4}][[All,1]]],{n,40}] (* Harvey P. Dale, Apr 25 2020 *)
  • PARI
    Vec(-x*(9*x^6+32*x^5+50*x^4+58*x^3+36*x^2+14*x+1) / ((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Mar 23 2014
    

Formula

G.f.: -x*(9*x^6+32*x^5+50*x^4+58*x^3+36*x^2+14*x+1) / ((x-1)^5*(x^2+x+1)^2). - Colin Barker, Mar 23 2014
Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n * Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * floor((sign(floor((4n-2-i)/2)-i)+2)/2). Then a(1) = 1, with a(n) = a(n-1) + b(n-1)/(4n-4) + Sum_{i=j+1..floor((4n-2-j)/2)} ( Sum_{j=0..2n} (4n-2-i-j) * floor((sign(floor((4n-2-j)/2)-j)+2)/2) ). - Wesley Ivan Hurt, Jun 13 2014

A240707 Sum of the middle parts in the partitions of 4n-1 into 3 parts.

Original entry on oeis.org

1, 8, 31, 80, 159, 282, 459, 690, 993, 1378, 1841, 2404, 3077, 3852, 4755, 5796, 6963, 8286, 9775, 11414, 13237, 15254, 17445, 19848, 22473, 25296, 28359, 31672, 35207, 39010, 43091, 47418, 52041, 56970, 62169, 67692, 73549, 79700, 86203, 93068, 100251
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 10 2014

Keywords

Comments

Original definition: Sum of the second largest parts in the partitions of 4n into 4 parts with smallest part = 1 (see the example).

Examples

			For a(n) add the parts in the second columns.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               8              31              80        ..   a(n)
		

Crossrefs

Programs

  • Maple
    A240707:=n->add(add(i*floor((signum((floor((4*n-2-j)/2)-j))+2)/2), i=j+1..floor((4*n-2-j)/2)), j=0..2*n); seq(A240707(n), n=1..50);
  • Mathematica
    c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[c[n], {n, 50}]
  • PARI
    Vec(x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 13 2014
    
  • PARI
    A240707(n)=sum(a=1,(4*n-1)\3,(4*n-1-a)\2*((4*n-1-a)\2+1)-a*(a-1))\2 \\ The summand is sum(b=a,(4*n-1-a)\2,b). - M. F. Hasler, Apr 17 2014

Formula

G.f.: x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 13 2014

Extensions

Definition simplified by M. F. Hasler, Apr 17 2014

A241084 Sum of the second largest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 10, 46, 141, 334, 680, 1247, 2106, 3348, 5077, 7396, 10432, 14325, 19210, 25250, 32621, 41490, 52056, 64531, 79114, 96040, 115557, 137896, 163328, 192137, 224586, 260982, 301645, 346870, 397000, 452391, 513370, 580316, 653621, 733644, 820800, 915517, 1018186, 1129258, 1249197
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Apr 15 2014

Keywords

Examples

			For a(n) add the numbers in the second columns.
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               10             46             141        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,10,46,141,334,680,1247,2106,3348]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[-(5*x^6 + 17*x^5 + 25*x^4 + 30*x^3 + 19*x^2 + 7*x + 1)/((x - 1)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 13 2014 *)
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 10, 46, 141, 334, 680, 1247, 2106, 3348}, 50] (* Vincenzo Librandi, Aug 29 2015 *)
    Table[Total[IntegerPartitions[4 n,{4}][[;;,2]]],{n,40}] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    Vec(-x*(5*x^6+17*x^5+25*x^4+30*x^3+19*x^2+7*x+1)/((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 16 2014
    

Formula

G.f.: -x*(5*x^6+17*x^5+25*x^4+30*x^3+19*x^2+7*x+1) / ((x-1)^5*(x^2+x+1)^2). - Colin Barker, Apr 16 2014
Recurrence: Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i))+2)/2)) for n>1. Then a(1) = 1, with a(n) = a(n-1) + b(n-1)/(4n-4) + Sum_{j=0..2n} (Sum_{i=j+1..floor((4n-2-j)/2)} i * (floor((sign((floor((4n-2-j)/2)-j))+ 2)/2)) ), for n>1. - Wesley Ivan Hurt, Jun 27 2014

A256288 Sum of all the parts in the partitions of 7n into 7 parts.

Original entry on oeis.org

0, 7, 210, 2205, 12208, 47845, 148638, 393617, 922600, 1970325, 3902360, 7270725, 12868128, 21811881, 35617708, 56319375, 86565808, 129780448, 190285326, 273509446, 386137220, 536375658, 734131552, 991339307, 1322171256, 1743437850, 2274824006, 2939374683
Offset: 0

Views

Author

Colin Barker, Mar 21 2015

Keywords

Examples

			For n=2 there are 15 partitions of 7*2 = 14, so a(2) = 15*14 = 210.
		

Crossrefs

Programs

  • Mathematica
    Plus @@ Total /@ IntegerPartitions[7 #, {7}] & /@ Range[0, 24] (* Michael De Vlieger, Mar 21 2015 *)
  • PARI
    concat(0, vector(35, n, k=0; forpart(p=7*n, k++, , [7,7]); 7*n*k))

Formula

a(n) = 7*n*A256287(n).

A239195 Sum of the next to smallest parts in the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

1, 5, 17, 42, 78, 134, 215, 315, 447, 616, 812, 1052, 1341, 1665, 2045, 2486, 2970, 3522, 4147, 4823, 5579, 6420, 7320, 8312, 9401, 10557, 11817, 13186, 14630, 16190, 17871, 19635, 21527, 23552, 25668, 27924, 30325, 32825, 35477, 38286, 41202, 44282, 47531
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 11 2014

Keywords

Examples

			For a(n) add the numbers in the third columns.
                                               13+ 1 + 1 + 1
                                               12+ 2 + 1 + 1
                                               11+ 3 + 1 + 1
                                               10+ 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                               11+ 2 + 2 + 1
                                               10+ 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               5              17              42        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[(((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i))/(4 n)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,5,17,42,78,134,215,315},60] (* Harvey P. Dale, Jul 05 2025 *)
  • PARI
    Vec(x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 12 2014
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - Wesley Ivan Hurt, Jul 08 2025

A242727 Sum of the third largest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 7, 29, 86, 198, 396, 719, 1203, 1899, 2866, 4156, 5840, 7997, 10695, 14025, 18086, 22962, 28764, 35611, 43603, 52871, 63554, 75768, 89664, 105401, 123111, 142965, 165142, 189790, 217100, 247271, 280467, 316899, 356786, 400308, 447696, 499189, 554983
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, May 21 2014

Keywords

Examples

			Add the numbers in the third column for a(n):
                                              13+ 1 + 1 + 1
                                              12+ 2 + 1 + 1
                                              11+ 3 + 1 + 1
                                              10+ 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                              11+ 2 + 2 + 1
                                              10+ 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1   10+ 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               7              29              86        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,7,29,86,198,396,719,1203,1899]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[-(1 + 4x + 11x^2 + 17x^3 + 12x^4 + 9x^5 + 2x^6) / ((-1 + x)^5 (1 + x + x^2)^2), {x, 0, 50}], x]
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 7, 29, 86, 198, 396, 719, 1203, 1899}, 50] (* Vincenzo Librandi, Aug 29 2015 *)

Formula

G.f.: (1 + 4*x + 11*x^2 + 17*x^3 + 12*x^4 + 9*x^5 + 2*x^6) / ((1 - x)^5*(1 + x + x^2)^2).
a(n) = A238328(n) - A239667(n) - A241084(n) - A238702(n).
a(n) = 7/27*n^4 + 35/27*n^3 + 22/9*n^2 + 59/27*n + O(1). - Ralf Stephan, May 26 2014

A240711 Sum of the largest parts in the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

1, 15, 62, 163, 333, 596, 973, 1475, 2130, 2959, 3969, 5192, 6649, 8343, 10310, 12571, 15125, 18012, 21253, 24843, 28826, 33223, 38025, 43280, 49009, 55199, 61902, 69139, 76893, 85220, 94141, 103635, 113762, 124543, 135953, 148056, 160873, 174375, 188630
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 10 2014

Keywords

Examples

			For a(n) add the parts in the first columns.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               15             62             163       ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; c[1] = 1; c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[b[n] - c[n], {n, 50}]
  • PARI
    Vec(x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 11 2014

Formula

G.f.: x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 11 2014

A243011 Sum of the three largest parts in the partitions of 4n into 4 parts.

Original entry on oeis.org

3, 34, 159, 489, 1161, 2365, 4336, 7323, 11640, 17646, 25702, 36246, 49761, 66720, 87685, 113263, 144039, 180699, 223974, 274561, 333270, 400956, 478428, 566620, 666511, 779022, 905211, 1046181, 1202965, 1376745, 1568748, 1780119, 2012164, 2266234, 2543586
Offset: 1

Views

Author

Wesley Ivan Hurt, May 28 2014

Keywords

Examples

			Add up the numbers in the first three columns for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     3               34            159             489        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    a[1] = 4; a[n_] := (n/(n - 1)) a[n - 1] + 4 n*Sum[(Floor[(4 n - 2 - i)/2] - i) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[a[n] - Sum[a[i]/i, {i, n}]/4, {n, 30}]
  • PARI
    Vec(-x*(16*x^6+58*x^5+87*x^4+105*x^3+66*x^2+25*x+3)/((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

a(n) = A238328(n) - A238702(n).
a(n) = A239667(n) + A241084(n) + A242727(n).
a(n) = 4n * A238340(n) - Sum_{i=1..n} A238340(i).
a(n) = (4n-1) * A238702(n) - 4n * A238702(n-1), n > 1.
a(n) = A238328(n) - (1/4) * Sum_{i=1..n} A238328(i)/i.
G.f.: -x*(16*x^6+58*x^5+87*x^4+105*x^3+66*x^2+25*x+3) / ((x-1)^5*(x^2+x+1)^2). - Colin Barker, Sep 22 2014
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 6*a(n-4) + 6*a(n-5) - 3*a(n-6) + 3*a(n-7) - 3*a(n-8) + a(n-9). - Wesley Ivan Hurt, Jun 20 2024
Previous Showing 11-18 of 18 results.