cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A237821 Number of partitions of n such that 2*(least part) <= greatest part.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

By conjugation, also the number of integer partitions of n with different median from maximum, ranks A362980. - Gus Wiseman, May 15 2023

Examples

			a(6) = 7 counts these partitions:  51, 42, 411, 321, 3111, 2211, 21111.
From _Gus Wiseman_, May 15 2023: (Start)
The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part:
  (21)  (31)   (41)    (42)     (52)
        (211)  (221)   (51)     (61)
               (311)   (321)    (331)
               (2111)  (411)    (421)
                       (2211)   (511)
                       (3111)   (2221)
                       (21111)  (3211)
                                (4111)
                                (22111)
                                (31111)
                                (211111)
The a(3) = 1 through a(8) = 16 partitions with different median from maximum:
  (21)  (31)   (32)    (42)     (43)
        (211)  (41)    (51)     (52)
               (311)   (321)    (61)
               (2111)  (411)    (322)
                       (2211)   (421)
                       (3111)   (511)
                       (21111)  (3211)
                                (4111)
                                (22111)
                                (31111)
                                (211111)
(End)
		

Crossrefs

The complement is counted by A053263, ranks A081306.
These partitions have ranks A069900.
The case of equality is A118096.
For < instead of <= we have A237820, ranks A362982.
For >= instead of <= we have A237824, ranks A362981.
The conjugate partitions have ranks A362980.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}]  (* A237820 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
    Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
    Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}]  (* A053263 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(3*i+j) /Product_{k=i..2*i+j} (1-x^k). - Seiichi Manyama, May 27 2023

A238589 Number of partitions p of n such that 2*min(p) is a part of p.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 5, 8, 13, 17, 24, 36, 47, 64, 88, 116, 153, 203, 261, 340, 439, 559, 710, 905, 1136, 1427, 1786, 2223, 2756, 3415, 4201, 5167, 6330, 7730, 9413, 11449, 13864, 16767, 20225, 24344, 29228, 35045, 41898, 50029, 59609, 70899, 84165, 99785, 118052
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2014

Keywords

Examples

			a(6) counts these partitions:  42, 321, 2211, 21111.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Min[p]]], {n, 50}]
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

a(n) = A000041(n) - A238594(n).
G.f.: Sum_{k>=1} x^(3*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + 49*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jun 19 2025

A362617 Numbers whose prime factorization has both (1) even length, and (2) unequal middle parts.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166, 177
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is not a prime factor of n, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factorization of 60 is 2*2*3*5, with middle parts (2,3), so 60 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238479.
The complement (without 1) is A362618, counted by A238478.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362605 ranks partitions with more than one mode, counted by A362607.
A362611 counts modes in prime factorization, triangle version A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.
Contains A006881 and (except for 1) A030229.

Programs

  • Maple
    filter:= proc(n) local F,m;
      F:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= nops(F);
      m::even and F[m/2] <> F[m/2+1]
    end proc:
    select(filter, [$2..200]); # Robert Israel, Dec 15 2023
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],FreeQ[prifacs[#],Median[prifacs[#]]]&]

A363068 Number of partitions p of n such that (1/5)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 59, 73, 94, 117, 148, 181, 228, 277, 344, 418, 514, 621, 762, 917, 1116, 1342, 1624, 1945, 2348, 2803, 3366, 4012, 4798, 5700, 6798, 8052, 9565, 11305, 13383, 15771, 18618, 21880, 25745, 30187, 35414, 41414, 48461, 56531, 65967
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Comments

In general, for m>=1, if g.f. = Sum_{k>=0} x^((m+1)*k) / Product_{j=1..m*k} (1 - x^j), then a(n) ~ Gamma(1/m) * Pi^(1/m) * exp(Pi*sqrt(2*n/3)) / (m^2 * 2^((4*m+1)/(2*m)) * 3^((m+1)/(2*m)) * n^(1 + 1/(2*m))). - Vaclav Kotesovec, Jun 19 2025

Examples

			a(8) = 2 counts these partitions:  521, 5111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(6*k)/Product[1 - x^j, {j, 1, 5*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(5*k))*(1-x^(5*k-1))*(1-x^(5*k-2))*(1-x^(5*k-3))*(1-x^(5*k-4))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(6*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    a(n) = sum(k=0, n\6, #partitions(n-6*k, 5*k));

Formula

G.f.: Sum_{k>=0} x^(6*k)/Product_{j=1..5*k} (1-x^j).
a(n) ~ Gamma(1/5) * Pi^(1/5) * exp(Pi*sqrt(2*n/3)) / (25 * 2^(21/10) * 3^(3/5) * n^(11/10)). - Vaclav Kotesovec, Jun 19 2025

A363124 Number of integer partitions of n with more than one non-mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 19, 28, 46, 65, 98, 132, 190, 251, 348, 451, 603, 768, 1014, 1273, 1648, 2052, 2604, 3233, 4062, 4984, 6203, 7582, 9333, 11349, 13890, 16763, 20388, 24528, 29613, 35502, 42660, 50880, 60883, 72376, 86158, 102120, 121133, 143010
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The a(7) = 1 through a(10) = 9 partitions:
  (3211)  (3221)   (3321)    (5221)
          (4211)   (4221)    (5311)
          (32111)  (4311)    (6211)
                   (5211)    (32221)
                   (42111)   (43111)
                   (321111)  (52111)
                             (322111)
                             (421111)
                             (3211111)
		

Crossrefs

For middle parts instead of non-modes we have A238479, complement A238478.
For modes instead of non-modes we have A362607, complement A362608.
For co-modes instead of non-modes we have A362609, complement A362610.
The complement is counted by A363125.
For non-co-modes instead of non-modes we have A363128, complement A363129.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]1&]],{n,0,30}]

A363125 Number of integer partitions of n with a unique non-mode.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 8, 9, 13, 18, 24, 24, 36, 41, 45, 57, 68, 72, 87, 95, 105, 131, 136, 149, 164, 199, 203, 232, 246, 276, 298, 335, 347, 409, 399, 467, 488, 567, 569, 636, 662, 757, 767, 878, 887, 1028, 1030, 1168, 1181, 1342, 1388, 1558, 1570, 1789, 1791
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The a(4) = 1 through a(9) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (5111)     (3222)
                          (4111)    (22211)    (6111)
                          (22111)   (41111)    (22221)
                          (31111)   (221111)   (32211)
                          (211111)  (311111)   (33111)
                                    (2111111)  (51111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

For middle parts instead of non-modes we have A238478, complement A238479.
For modes instead of non-modes we have A362608, complement A362607.
For co-modes instead of non-modes we have A362610, complement A362609.
The complement is counted by A363124.
For non-co-modes instead of non-modes we have A363129, complement A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				

A363128 Number of integer partitions of n with more than one non-co-mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 18, 25, 44, 60, 96, 122, 188, 243, 344, 442, 615, 769, 1047, 1308, 1722, 2150, 2791, 3430, 4405, 5401, 6803, 8326, 10408, 12608, 15641, 18906, 23179, 27935, 34061, 40778, 49451, 59038, 71060, 84604, 101386, 120114, 143358
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			The a(9) = 1 through a(12) = 9 partitions:
  (32211)  (33211)   (33221)    (43311)
           (42211)   (52211)    (44211)
           (322111)  (322211)   (62211)
                     (332111)   (422211)
                     (422111)   (522111)
                     (3221111)  (3222111)
                                (3321111)
                                (4221111)
                                (32211111)
		

Crossrefs

For parts instead of multiplicities we have
For middles instead of non-co-modes we have A238479, complement A238478.
For modes instead of non-co-modes we have A362607, complement A362608.
For co-modes instead of non-co-modes we have A362609, complement A362610.
For non-modes instead of non-co-modes we have A363124, complement A363125.
The complement is counted by A363129.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363127 counts non-modes in prime factorization, triangle A363126.
A363131 counts non-co-modes in prime factorization, triangle A363130.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]>1&]],{n,0,30}]

A363129 Number of integer partitions of n with a unique non-co-mode.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 12, 18, 24, 37, 43, 64, 81, 99, 129, 162, 201, 247, 303, 364, 457, 535, 653, 765, 943, 1085, 1315, 1517, 1830, 2096, 2516, 2877, 3432, 3881, 4622, 5235, 6189, 7003, 8203, 9261, 10859, 12199, 14216, 15985, 18544, 20777, 24064, 26897
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			The a(4) = 1 through a(9) = 18 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (3221)     (3222)
                          (3211)    (4211)     (3321)
                          (4111)    (5111)     (4221)
                          (22111)   (22211)    (4311)
                          (31111)   (32111)    (5211)
                          (211111)  (41111)    (6111)
                                    (221111)   (22221)
                                    (311111)   (33111)
                                    (2111111)  (42111)
                                               (51111)
                                               (321111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

For parts instead of multiplicities we have A002133.
For middles instead of non-co-modes we have A238478, complement A238479.
For modes instead of non-co-modes we have A362608, complement A362607.
For co-modes instead of non-co-modes we have A362610, complement A362609.
For non-modes instead of non-co-modes we have A363125, complement A363124.
The complement is counted by A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363127 counts non-modes in prime factorization, triangle A363126.
A363131 counts non-co-modes in prime factorization, triangle A363130.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]==1&]],{n,0,30}]

A362618 Numbers whose prime factorization has either (1) odd length, or (2) equal middle parts.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 98, 99, 101
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is a prime factor of n.

Examples

			The prime factorization of 90 is 2*3*3*5, with middle parts (3,3), so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238478.
The complement (without 1) is A362617, counted by A238479.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362611 ranks modes in prime factorization, counted by A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],MemberQ[prifacs[#],Median[prifacs[#]]]&]

A363066 Number of partitions p of n such that (1/3)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 16, 20, 27, 33, 45, 55, 72, 89, 116, 142, 181, 222, 281, 343, 429, 522, 649, 786, 967, 1168, 1429, 1719, 2088, 2504, 3026, 3615, 4345, 5174, 6192, 7349, 8755, 10360, 12297, 14507, 17154, 20182, 23788, 27910, 32790, 38374, 44955, 52480, 61307, 71402
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(4*k)/Product[1 - x^j, {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(3*k))*(1-x^(3*k-1))*(1-x^(3*k-2))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(4*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
    Join[{1},Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]/3]&)],{n,60}]] (* _Harvey P. Dale, Jun 29 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, #partitions(n-4*k, 3*k));

Formula

G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..3*k} (1-x^j).
a(n) ~ Gamma(1/3) * Pi^(1/3) * exp(Pi*sqrt(2*n/3)) / (2^(13/6) * 3^(8/3) * n^(7/6)). - Vaclav Kotesovec, Jun 19 2025
Previous Showing 11-20 of 23 results. Next