cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A220644 T(n,k) = number of ways to reciprocally link elements of an n X k array either to themselves or to exactly one king-move neighbor.

Original entry on oeis.org

1, 2, 2, 3, 10, 3, 5, 40, 40, 5, 8, 172, 369, 172, 8, 13, 728, 3755, 3755, 728, 13, 21, 3096, 37320, 92801, 37320, 3096, 21, 34, 13152, 373177, 2226936, 2226936, 373177, 13152, 34, 55, 55888, 3725843, 53841725, 128171936, 53841725, 3725843, 55888, 55, 89
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2012

Keywords

Comments

Table starts
...1........2............3.................5.....................8
...2.......10...........40...............172...................728
...3.......40..........369..............3755.................37320
...5......172.........3755.............92801...............2226936
...8......728........37320...........2226936.............128171936
..13.....3096.......373177..........53841725............7444342896
..21....13152......3725843........1299348473..........431408410784
..34....55888.....37213728.......31371388772........25014514225856
..55...237472....371654153......757341382671......1450226501771584
..89..1009056...3711809483....18283618480037.....84080327982982848
.144..4287616..37070598992...441397115736816...4874715696405194752
.233.18218688.370232236753.10656083384666537.282621433306639435392

Examples

			Some solutions for n=3 k=4 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4..8....6..4..0..0....8..0..0..0....9..6..4..8....6..4..0..0
..0..7..7..2....8..0..9..7....2..8..8..0....8..1..9..2....0..0..8..8
..3..3..6..4....2..0..3..1....0..2..2..0....2..6..4..1....0..0..2..2
		

Crossrefs

Main diagonal is A220638.
Cf. A239264.

A243424 Triangle T(n,k) read by rows of number of ways k domicules can be placed on an n X n square (n >= 0, 0 <= k <= floor(n^2/2)).

Original entry on oeis.org

1, 1, 1, 6, 3, 1, 20, 110, 180, 58, 1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280, 1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, 34431880, 16172160, 3219364, 170985, 1, 110, 5375, 154434, 2911226, 38049764, 355340561, 2408715568
Offset: 0

Views

Author

Alois P. Heinz, Jun 04 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
The n-th row gives the coefficients of the matching-generating polynomial of the n X n king graph. - Eric W. Weisstein, Jun 20 2017

Examples

			T(2,1) = 6:
  +---+  +---+  +---+  +---+  +---+  +---+
  |o-o|  |   |  |o  |  |  o|  |o  |  |  o|
  |   |  |   |  ||  |  |  ||  | \ |  | / |
  |   |  |o-o|  |o  |  |  o|  |  o|  |o  |
  +---+  +---+  +---+  +---+  +---+  +---+
T(2,2) = 3:
  +---+  +---+  +---+
  |o-o|  |o o|  |o o|
  |   |  || ||  | X |
  |o-o|  |o o|  |o o|
  +---+  +---+  +---+
Triangle T(n,k) begins:
  1;
  1;
  1,  6,    3;
  1, 20,  110,   180,     58;
  1, 42,  657,  4890,  18343,   33792,   27380,     7416,      280;
  1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, ...
  ...
		

Crossrefs

Columns k=0-5 give: A000012, A002943(n-1) for n>0, A243464, A243465, A243466, A243467.
Row sums give A220638.
T(n,floor(n^2/2)) gives A243510.
T(n,floor(n^2/4)) gives A243511.
Cf. A242861 (the same for dominoes), A239264.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, f, k;
          d:= nops(l)/2; f:=false;
          if n=0 then 1
        elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
        else for k to d while not l[k] do od;
             expand(b(n, subsop(k=f, l))+
             `if`(k1 and l[k+d+1],
                                x*b(n, subsop(k=f, k+d+1=f, l)), 0)+
             `if`(k>1 and n>1 and l[k+d-1],
                                x*b(n, subsop(k=f, k+d-1=f, l)), 0)+
             `if`(n>1 and l[k+d], x*b(n, subsop(k=f, k+d=f, l)), 0)+
             `if`(k (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, [true$(n*2)])):
    seq(T(n), n=0..7);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Table[f, d], b[n-1, Join[l[[d+1 ;; 2d]], Table[ True, d]]], True, For[k = 1, !l[[k]], k++]; Expand[b[n, ReplacePart[l, k -> f]] + If[k1 && l[[k+d+1]], x*b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k>1 && n>1 && l[[k + d - 1]], x*b[n, ReplacePart[ l, {k -> f, k + d - 1 -> f}]], 0] + If[n>1 && l[[k + d]], x*b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
      b[n, Table[True, 2n]]];
    Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)

A239273 Number of domicule tilings of a 2n X 2n square grid.

Original entry on oeis.org

1, 3, 280, 3037561, 3263262629905, 326207195516663381931, 3011882198082438957330143630563, 2565014347691062208319404612723752103028288, 201442620359313683494245316355883565275531844406384955392, 1458834332808489549111708247664894524221330758005874053074138540424018259
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.
Number of perfect matchings in the 2n X 2n kings graph. - Andrew Howroyd, Apr 07 2016

Examples

			a(1) = 3:
  +---+   +---+   +---+
  |o o|   |o o|   |o-o|
  || ||   | X |   |   |
  |o o|   |o o|   |o-o|
  +---+   +---+   +---+.
a(2) = 280:
  +-------+ +-------+ +-------+ +-------+ +-------+
  |o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o|
  | X     | | X     | |       | | X  | || | \   / |
  |o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
  |   /  || |   / / | ||  X  || |       | ||     ||
  |o o o o| |o o o o| |o o o o| |o-o o o| |o o o o|
  ||    \ | ||     || |       | |     X | | / /   |
  |o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o|
  +-------+ +-------+ +-------+ +-------+ +-------+ ...
		

Crossrefs

Even bisection of main diagonal of A239264.

Programs

  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]];
    A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]];
    a[n_] := A[2n, 2n];
    Table[Print[n]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A239264 *)

Formula

a(n) = A239264(2n,2n).

Extensions

a(8) from Alois P. Heinz, Sep 30 2014
a(9) from Alois P. Heinz, Nov 23 2018

A239265 Number of domicule tilings of a 3 X 2n grid.

Original entry on oeis.org

1, 5, 43, 451, 4945, 54685, 605707, 6710971, 74358721, 823915861, 9129240139, 101154812563, 1120826772817, 12419109262381, 137607593744107, 1524734943844939, 16894537473570817, 187196730554444581, 2074198005431257579, 22982759116542299875
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Examples

			a(1) = 5:
  +---+  +---+  +---+  +---+  +---+
  |o o|  |o o|  |o-o|  |o-o|  |o-o|
  | X |  || ||  |   |  |   |  |   |
  |o o|  |o o|  |o-o|  |o o|  |o o|
  |   |  |   |  |   |  || ||  | X |
  |o-o|  |o-o|  |o-o|  |o o|  |o o|
  +---+  +---+  +---+  +---+  +---+.
		

Crossrefs

Even bisection of column k=3 of A239264.

Programs

  • Maple
    gf:= -(x^2+8*x-1)/(3*x^3+21*x^2-13*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: -(x^2+8*x-1)/(3*x^3+21*x^2-13*x+1).

A239266 Number of domicule tilings of a 4 X n grid.

Original entry on oeis.org

1, 1, 11, 43, 280, 1563, 9415, 55553, 331133, 1968400, 11716601, 69716257, 414898579, 2469046811, 14693544104, 87442204835, 520375602855, 3096794588441, 18429266069421, 109673987617376, 652678415082545, 3884139865306433, 23114817718082715, 137558073518189643
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Examples

			a(2) = 11:
  +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
  |o o| |o o| |o o| |o-o| |o o| |o-o| |o o| |o o| |o-o| |o-o| |o-o|
  | X | | X | | X | |   | || || |   | || || || || |   | |   | |   |
  |o o| |o o| |o o| |o o| |o o| |o-o| |o o| |o o| |o-o| |o-o| |o o|
  |   | |   | |   | | X | |   | |   | |   | |   | |   | |   | || ||
  |o o| |o o| |o-o| |o o| |o o| |o o| |o o| |o-o| |o o| |o-o| |o o|
  | X | || || |   | |   | | X | | X | || || |   | || || |   | |   |
  |o o| |o o| |o-o| |o-o| |o o| |o o| |o o| |o-o| |o o| |o-o| |o-o|
  +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+.
		

Crossrefs

Column k=4 of A239264.

Programs

  • Maple
    gf:= -(x-1)*(x^3-x^2+5*x-1)/(5*x^6-11*x^5+30*x^4-30*x^3-2*x^2+7*x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: -(x-1)*(x^3-x^2+5*x-1)/(5*x^6-11*x^5+30*x^4-30*x^3-2*x^2+7*x-1).

A239267 Number of domicule tilings of a 5 X 2n grid.

Original entry on oeis.org

1, 21, 1563, 162409, 17508475, 1894621633, 205109410835, 22206188455913, 2404176415007051, 260291084969169553, 28180738494571199683, 3051022897700513626745, 330322812747235906893563, 35762812820215620676404385, 3871905699058282397207463923
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Crossrefs

Even bisection of column k=5 of A239264.

Programs

  • Maple
    gf:= -(2048*x^7 -7680*x^6 -25472*x^5 +42048*x^4 -18928*x^3 +2912*x^2 -124*x+1) / (16384*x^8 -58112*x^7 -180608*x^6 +352480*x^5 -201552*x^4 +46976*x^3 -4394*x^2 +145*x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

G.f.: -(2048*x^7 -7680*x^6 -25472*x^5 +42048*x^4 -18928*x^3 +2912*x^2 -124*x+1) / (16384*x^8 -58112*x^7 -180608*x^6 +352480*x^5 -201552*x^4 +46976*x^3 -4394*x^2 +145*x-1).

A239268 Number of domicule tilings of a 6 X n grid.

Original entry on oeis.org

1, 1, 43, 451, 9415, 162409, 3037561, 55263473, 1017093992, 18633949879, 342050825969, 6273663002379, 115107979930355, 2111655465575629, 38740910476086035, 710728644139932355, 13038974254406437397, 239210680096992061776, 4388527184214799104521
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Crossrefs

Column k=6 of A239264.

Programs

  • Maple
    gf:= -(45*x^18 +330*x^17 -3649*x^16 +872*x^15 +13497*x^14 -31638*x^13 +33844*x^12 +87562*x^11 -231307*x^10 -22714*x^9 +206771*x^8 -57002*x^7 -8736*x^6 +7970*x^5 -2193*x^4 -364*x^3 +145*x^2 +10*x-1) /
    (585*x^20 +4335*x^19 -47413*x^18 +4273*x^17 +187195*x^16 -352817*x^15 +385178*x^14 +1070602*x^13 -2911442*x^12 -370773*x^11 +2929813*x^10 -729299*x^9 -407618*x^8 +200422*x^7 -19642*x^6 -15983*x^5 +4787*x^4 +563*x^3 -177*x^2 -11*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

G.f.: -(45*x^18 +330*x^17 -3649*x^16 +872*x^15 +13497*x^14 -31638*x^13 +33844*x^12 +87562*x^11 -231307*x^10 -22714*x^9 +206771*x^8 -57002*x^7 -8736*x^6 +7970*x^5 -2193*x^4 -364*x^3 +145*x^2 +10*x-1) / (585*x^20 +4335*x^19 -47413*x^18 +4273*x^17 +187195*x^16 -352817*x^15 +385178*x^14 +1070602*x^13 -2911442*x^12 -370773*x^11 +2929813*x^10 -729299*x^9 -407618*x^8 +200422*x^7 -19642*x^6 -15983*x^5 +4787*x^4 +563*x^3 -177*x^2 -11*x+1).

A239269 Number of domicule tilings of a 7 X 2n grid.

Original entry on oeis.org

1, 85, 55553, 55263473, 57228320561, 59567383578529, 62052716855623473, 64650946142760951261, 67359700036979921768537, 70182277765258094462607893, 73123194329034252403047192825, 76187359457974079841046201710145, 79379928242473326520049884806574585
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Crossrefs

Even bisection of column k=7 of A239264.

Programs

  • Maple
    gf:= -(7893703125*x^35 +1178708506875*x^34 -9471431967075*x^33 -25190320844889*x^32 -9539586874311708*x^31 -410493220050893916*x^30 +575920683970775496*x^29 +18726269678802107312*x^28 -29034124354337289144*x^27 -271800359878010634120*x^26 +133177110631012683908*x^25 +3079586993271739345580*x^24 +7730783335738153680196*x^23 -13782583787844763915596*x^22 -24366977853323332846216*x^21 +42038513809989658019568*x^20
    -2063678050944576884326*x^19 -12638594920205361440138*x^18 -17386843344014733116586*x^17 +12426575461737923667314*x^16 +1343983627937159538828*x^15 -1998626828626429701652*x^14 +204472622438434512248*x^13 +108140323865267622480*x^12 -35469623048779376672*x^11 +4748719687765155200*x^10 -335752562560949100*x^9 +11627286098346812*x^8 -19234625432244*x^7 -14741830904132*x^6 +600036486728*x^5 -11552831472*x^4 +119161193*x^3 -637033*x^2 +1525*x-1) /
    (165767765625*x^36 +24700588841250*x^35 -207544264492950*x^34 -563331132080334*x^33 -200395385497647183*x^32 -8534040529839498708*x^31 +14421739565668843632*x^30 +373620115417467491764*x^29 -641619825956467695364*x^28 -5341798879289372842564*x^27 +3704450681906208094872*x^26 +62112119203321800127524*x^25 +139265952634127843836508*x^24 -281856942688598542445972*x^23 -423329608424574749966944*x^22 +819513105984638655264308*x^21 -131429598068784609902586*x^20 -183950660210880870863984*x^19
    -338671775387238895856372*x^18 +266233302665002558298712*x^17 +10903080854445516491318*x^16 -42213214899090813823964*x^15 +6893131124521390078704*x^14 +1965020207232094351100*x^13 -889373505806780285412*x^12 +147961219061817772452*x^11 -13450469929625673736*x^10 +688585418250974364*x^9 -15421722568196676*x^8 -288352000782012*x^7 +30787771291904*x^6 -957729947364*x^5 +15806918761*x^4 -146042386*x^3 +718330*x^2 -1610*x+1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..20);

Formula

G.f.: see Maple program.

A239270 Number of domicule tilings of an 8 X n grid.

Original entry on oeis.org

1, 1, 171, 4945, 331133, 17508475, 1017093992, 57228320561, 3263262629905, 185175369431551, 10529540995776143, 598275977865042347, 34004634498887815603, 1932504421503220832048, 109831420296006021851427, 6242000703148139096486777, 354752087455830720672222391
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Crossrefs

Column k=8 of A239264.

A239271 Number of domicule tilings of a 9 X 2n grid.

Original entry on oeis.org

1, 341, 1968400, 18633949879, 185175369431551, 1851260737169108297, 18523901518471987018869, 185376808904045560177646408, 1855186116430353424133583769247, 18566115077411836147307357343137943, 185803902034786238482393324889706764945
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2014

Keywords

Comments

A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other.

Crossrefs

Even bisection of column k=9 of A239264.
Showing 1-10 of 11 results. Next