A220644
T(n,k) = number of ways to reciprocally link elements of an n X k array either to themselves or to exactly one king-move neighbor.
Original entry on oeis.org
1, 2, 2, 3, 10, 3, 5, 40, 40, 5, 8, 172, 369, 172, 8, 13, 728, 3755, 3755, 728, 13, 21, 3096, 37320, 92801, 37320, 3096, 21, 34, 13152, 373177, 2226936, 2226936, 373177, 13152, 34, 55, 55888, 3725843, 53841725, 128171936, 53841725, 3725843, 55888, 55, 89
Offset: 1
Some solutions for n=3 k=4 0=self 1=nw 2=n 3=ne 4=w 6=e 7=sw 8=s 9=se (reciprocal directions total 10)
..0..6..4..8....6..4..0..0....8..0..0..0....9..6..4..8....6..4..0..0
..0..7..7..2....8..0..9..7....2..8..8..0....8..1..9..2....0..0..8..8
..3..3..6..4....2..0..3..1....0..2..2..0....2..6..4..1....0..0..2..2
A243424
Triangle T(n,k) read by rows of number of ways k domicules can be placed on an n X n square (n >= 0, 0 <= k <= floor(n^2/2)).
Original entry on oeis.org
1, 1, 1, 6, 3, 1, 20, 110, 180, 58, 1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280, 1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, 34431880, 16172160, 3219364, 170985, 1, 110, 5375, 154434, 2911226, 38049764, 355340561, 2408715568
Offset: 0
T(2,1) = 6:
+---+ +---+ +---+ +---+ +---+ +---+
|o-o| | | |o | | o| |o | | o|
| | | | || | | || | \ | | / |
| | |o-o| |o | | o| | o| |o |
+---+ +---+ +---+ +---+ +---+ +---+
T(2,2) = 3:
+---+ +---+ +---+
|o-o| |o o| |o o|
| | || || | X |
|o-o| |o o| |o o|
+---+ +---+ +---+
Triangle T(n,k) begins:
1;
1;
1, 6, 3;
1, 20, 110, 180, 58;
1, 42, 657, 4890, 18343, 33792, 27380, 7416, 280;
1, 72, 2172, 36028, 362643, 2307376, 9382388, 24121696, 37965171, ...
...
-
b:= proc(n, l) option remember; local d, f, k;
d:= nops(l)/2; f:=false;
if n=0 then 1
elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d])
else for k to d while not l[k] do od;
expand(b(n, subsop(k=f, l))+
`if`(k1 and l[k+d+1],
x*b(n, subsop(k=f, k+d+1=f, l)), 0)+
`if`(k>1 and n>1 and l[k+d-1],
x*b(n, subsop(k=f, k+d-1=f, l)), 0)+
`if`(n>1 and l[k+d], x*b(n, subsop(k=f, k+d=f, l)), 0)+
`if`(k (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, [true$(n*2)])):
seq(T(n), n=0..7);
-
b[n_, l_] := b[n, l] = Module[{d, f, k}, d = Length[l]/2; f = False; Which[ n == 0, 1, l[[1 ;; d]] == Table[f, d], b[n-1, Join[l[[d+1 ;; 2d]], Table[ True, d]]], True, For[k = 1, !l[[k]], k++]; Expand[b[n, ReplacePart[l, k -> f]] + If[k1 && l[[k+d+1]], x*b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k>1 && n>1 && l[[k + d - 1]], x*b[n, ReplacePart[ l, {k -> f, k + d - 1 -> f}]], 0] + If[n>1 && l[[k + d]], x*b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k f, k+1 -> f}]], 0]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][
b[n, Table[True, 2n]]];
Table[T[n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
A239273
Number of domicule tilings of a 2n X 2n square grid.
Original entry on oeis.org
1, 3, 280, 3037561, 3263262629905, 326207195516663381931, 3011882198082438957330143630563, 2565014347691062208319404612723752103028288, 201442620359313683494245316355883565275531844406384955392, 1458834332808489549111708247664894524221330758005874053074138540424018259
Offset: 0
a(1) = 3:
+---+ +---+ +---+
|o o| |o o| |o-o|
|| || | X | | |
|o o| |o o| |o-o|
+---+ +---+ +---+.
a(2) = 280:
+-------+ +-------+ +-------+ +-------+ +-------+
|o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o|
| X | | X | | | | X | || | \ / |
|o o o o| |o o o o| |o o o o| |o o o o| |o o o o|
| / || | / / | || X || | | || ||
|o o o o| |o o o o| |o o o o| |o-o o o| |o o o o|
|| \ | || || | | | X | | / / |
|o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o|
+-------+ +-------+ +-------+ +-------+ +-------+ ...
Even bisection of main diagonal of
A239264.
-
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]];
A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]];
a[n_] := A[2n, 2n];
Table[Print[n]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A239264 *)
A239265
Number of domicule tilings of a 3 X 2n grid.
Original entry on oeis.org
1, 5, 43, 451, 4945, 54685, 605707, 6710971, 74358721, 823915861, 9129240139, 101154812563, 1120826772817, 12419109262381, 137607593744107, 1524734943844939, 16894537473570817, 187196730554444581, 2074198005431257579, 22982759116542299875
Offset: 0
a(1) = 5:
+---+ +---+ +---+ +---+ +---+
|o o| |o o| |o-o| |o-o| |o-o|
| X | || || | | | | | |
|o o| |o o| |o-o| |o o| |o o|
| | | | | | || || | X |
|o-o| |o-o| |o-o| |o o| |o o|
+---+ +---+ +---+ +---+ +---+.
Even bisection of column k=3 of
A239264.
-
gf:= -(x^2+8*x-1)/(3*x^3+21*x^2-13*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
A239266
Number of domicule tilings of a 4 X n grid.
Original entry on oeis.org
1, 1, 11, 43, 280, 1563, 9415, 55553, 331133, 1968400, 11716601, 69716257, 414898579, 2469046811, 14693544104, 87442204835, 520375602855, 3096794588441, 18429266069421, 109673987617376, 652678415082545, 3884139865306433, 23114817718082715, 137558073518189643
Offset: 0
a(2) = 11:
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
|o o| |o o| |o o| |o-o| |o o| |o-o| |o o| |o o| |o-o| |o-o| |o-o|
| X | | X | | X | | | || || | | || || || || | | | | | |
|o o| |o o| |o o| |o o| |o o| |o-o| |o o| |o o| |o-o| |o-o| |o o|
| | | | | | | X | | | | | | | | | | | | | || ||
|o o| |o o| |o-o| |o o| |o o| |o o| |o o| |o-o| |o o| |o-o| |o o|
| X | || || | | | | | X | | X | || || | | || || | | | |
|o o| |o o| |o-o| |o-o| |o o| |o o| |o o| |o-o| |o o| |o-o| |o-o|
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+.
-
gf:= -(x-1)*(x^3-x^2+5*x-1)/(5*x^6-11*x^5+30*x^4-30*x^3-2*x^2+7*x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
A239267
Number of domicule tilings of a 5 X 2n grid.
Original entry on oeis.org
1, 21, 1563, 162409, 17508475, 1894621633, 205109410835, 22206188455913, 2404176415007051, 260291084969169553, 28180738494571199683, 3051022897700513626745, 330322812747235906893563, 35762812820215620676404385, 3871905699058282397207463923
Offset: 0
Even bisection of column k=5 of
A239264.
-
gf:= -(2048*x^7 -7680*x^6 -25472*x^5 +42048*x^4 -18928*x^3 +2912*x^2 -124*x+1) / (16384*x^8 -58112*x^7 -180608*x^6 +352480*x^5 -201552*x^4 +46976*x^3 -4394*x^2 +145*x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
A239268
Number of domicule tilings of a 6 X n grid.
Original entry on oeis.org
1, 1, 43, 451, 9415, 162409, 3037561, 55263473, 1017093992, 18633949879, 342050825969, 6273663002379, 115107979930355, 2111655465575629, 38740910476086035, 710728644139932355, 13038974254406437397, 239210680096992061776, 4388527184214799104521
Offset: 0
-
gf:= -(45*x^18 +330*x^17 -3649*x^16 +872*x^15 +13497*x^14 -31638*x^13 +33844*x^12 +87562*x^11 -231307*x^10 -22714*x^9 +206771*x^8 -57002*x^7 -8736*x^6 +7970*x^5 -2193*x^4 -364*x^3 +145*x^2 +10*x-1) /
(585*x^20 +4335*x^19 -47413*x^18 +4273*x^17 +187195*x^16 -352817*x^15 +385178*x^14 +1070602*x^13 -2911442*x^12 -370773*x^11 +2929813*x^10 -729299*x^9 -407618*x^8 +200422*x^7 -19642*x^6 -15983*x^5 +4787*x^4 +563*x^3 -177*x^2 -11*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
A239269
Number of domicule tilings of a 7 X 2n grid.
Original entry on oeis.org
1, 85, 55553, 55263473, 57228320561, 59567383578529, 62052716855623473, 64650946142760951261, 67359700036979921768537, 70182277765258094462607893, 73123194329034252403047192825, 76187359457974079841046201710145, 79379928242473326520049884806574585
Offset: 0
Even bisection of column k=7 of
A239264.
-
gf:= -(7893703125*x^35 +1178708506875*x^34 -9471431967075*x^33 -25190320844889*x^32 -9539586874311708*x^31 -410493220050893916*x^30 +575920683970775496*x^29 +18726269678802107312*x^28 -29034124354337289144*x^27 -271800359878010634120*x^26 +133177110631012683908*x^25 +3079586993271739345580*x^24 +7730783335738153680196*x^23 -13782583787844763915596*x^22 -24366977853323332846216*x^21 +42038513809989658019568*x^20
-2063678050944576884326*x^19 -12638594920205361440138*x^18 -17386843344014733116586*x^17 +12426575461737923667314*x^16 +1343983627937159538828*x^15 -1998626828626429701652*x^14 +204472622438434512248*x^13 +108140323865267622480*x^12 -35469623048779376672*x^11 +4748719687765155200*x^10 -335752562560949100*x^9 +11627286098346812*x^8 -19234625432244*x^7 -14741830904132*x^6 +600036486728*x^5 -11552831472*x^4 +119161193*x^3 -637033*x^2 +1525*x-1) /
(165767765625*x^36 +24700588841250*x^35 -207544264492950*x^34 -563331132080334*x^33 -200395385497647183*x^32 -8534040529839498708*x^31 +14421739565668843632*x^30 +373620115417467491764*x^29 -641619825956467695364*x^28 -5341798879289372842564*x^27 +3704450681906208094872*x^26 +62112119203321800127524*x^25 +139265952634127843836508*x^24 -281856942688598542445972*x^23 -423329608424574749966944*x^22 +819513105984638655264308*x^21 -131429598068784609902586*x^20 -183950660210880870863984*x^19
-338671775387238895856372*x^18 +266233302665002558298712*x^17 +10903080854445516491318*x^16 -42213214899090813823964*x^15 +6893131124521390078704*x^14 +1965020207232094351100*x^13 -889373505806780285412*x^12 +147961219061817772452*x^11 -13450469929625673736*x^10 +688585418250974364*x^9 -15421722568196676*x^8 -288352000782012*x^7 +30787771291904*x^6 -957729947364*x^5 +15806918761*x^4 -146042386*x^3 +718330*x^2 -1610*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
A239270
Number of domicule tilings of an 8 X n grid.
Original entry on oeis.org
1, 1, 171, 4945, 331133, 17508475, 1017093992, 57228320561, 3263262629905, 185175369431551, 10529540995776143, 598275977865042347, 34004634498887815603, 1932504421503220832048, 109831420296006021851427, 6242000703148139096486777, 354752087455830720672222391
Offset: 0
A239271
Number of domicule tilings of a 9 X 2n grid.
Original entry on oeis.org
1, 341, 1968400, 18633949879, 185175369431551, 1851260737169108297, 18523901518471987018869, 185376808904045560177646408, 1855186116430353424133583769247, 18566115077411836147307357343137943, 185803902034786238482393324889706764945
Offset: 0
Even bisection of column k=9 of
A239264.
Showing 1-10 of 11 results.
Comments