A382857 Number of ways to permute the prime indices of n so that the run-lengths are all equal.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 2, 4, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 1, 2, 1, 6, 2, 2
Offset: 0
Keywords
Examples
The prime indices of 216 are {1,1,1,2,2,2} and we have permutations: (1,1,1,2,2,2) (1,2,1,2,1,2) (2,1,2,1,2,1) (2,2,2,1,1,1) so a(216) = 4. The prime indices of 25920 are {1,1,1,1,1,1,2,2,2,2,3} and we have permutations: (1,2,1,2,1,2,1,2,1,3,1) (1,2,1,2,1,2,1,3,1,2,1) (1,2,1,2,1,3,1,2,1,2,1) (1,2,1,3,1,2,1,2,1,2,1) (1,3,1,2,1,2,1,2,1,2,1) so a(25920) = 5.
Crossrefs
For distinct instead of equal run-lengths we have A382771.
Positions of first appearances are A382878.
Positions of 0 are A382879.
Positions of terms > 1 are A383089.
Positions of 1 are A383112.
A003963 gives product of prime indices.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
Programs
-
Mathematica
Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]], SameQ@@Length/@Split[#]&]],{n,0,100}]
Comments