cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A317304 Numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have a central valley.

Original entry on oeis.org

4, 5, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

Omar E. Pol, Aug 27 2018

Keywords

Comments

Also triangle read by rows which gives the even-indexed rows of triangle A014132.
There are no triangular number (A000217) in this sequence.
For more information about the symmetric representation of sigma see A237593 and its related sequences.
Equivalently, numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have an even number of peaks. - Omar E. Pol, Sep 13 2018

Examples

			Written as an irregular triangle in which the row lengths are the positive even numbers, the sequence begins:
    4,   5;
   11,  12,  13,  14;
   22,  23,  24,  25,  26,  27;
   37,  38,  39,  40,  41,  42,  43,  44;
   56,  57,  58,  59,  60,  61,  62,  63,  64,  65;
   79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90;
  106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119;
...
Illustration of initial terms:
-------------------------------------------------
   k  sigma(k)  Diagram of the symmetry of sigma
-------------------------------------------------
                       _ _           _ _ _ _
                      | | |         | | | | |
                     _| | |         | | | | |
                 _ _|  _|_|         | | | | |
   4      7     |_ _ _|             | | | | |
   5      6     |_ _ _|             | | | | |
                                 _ _|_| | | |
                               _|    _ _|_| |
                             _|     |  _ _ _|
                            |      _|_|
                 _ _ _ _ _ _|  _ _|
  11     12     |_ _ _ _ _ _| |  _|
  12     28     |_ _ _ _ _ _ _| |
  13     14     |_ _ _ _ _ _ _| |
  14     24     |_ _ _ _ _ _ _ _|
.
For the first six terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central valley.
Compare with A317303.
		

Crossrefs

Row sums give A084367. n >= 1.
Column 1 gives A084849, n >= 1.
Column 2 gives A096376, n >= 1.
Right border gives the nonzero terms of A014106.
The union of A000217, A317303 and this sequence gives A001477.
Some other sequences related to the central peak or the central valley of the symmetric representation of sigma are A000217, A000384, A007606, A007607, A014105, A014132, A162917, A161983, A317303. See also A317306.

A317305 Sum of divisors of the n-th number whose divisors increase by a factor of 2 or less.

Original entry on oeis.org

1, 3, 7, 12, 15, 28, 31, 39, 42, 60, 56, 72, 63, 91, 90, 96, 124, 120, 120, 168, 127, 144, 195, 186, 224, 180, 234, 252, 217, 210, 280, 248, 360, 312, 255, 336, 336, 403, 372, 392, 378, 363, 480, 372, 546, 508, 399, 468, 465, 504, 434, 576, 600, 504, 504, 560, 546, 744, 728, 511
Offset: 1

Views

Author

Omar E. Pol, Aug 25 2018

Keywords

Comments

Also consider the n-th number k with the property that the symmetric representation of sigma(k) has only one part. a(n) is the area of the diagram (see the example). For more information see A237593 and its related sequences.

Examples

			Illustration of initial terms (n = 1..13):
.
  a(n)
        _ _   _   _   _       _       _   _   _       _       _   _   _
   1   |_| | | | | | | |     | |     | | | | | |     | |     | | | | | |
   3   |_ _|_| | | | | |     | |     | | | | | |     | |     | | | | | |
        _ _|  _|_| | | |     | |     | | | | | |     | |     | | | | | |
   7   |_ _ _|    _|_| |     | |     | | | | | |     | |     | | | | | |
        _ _ _|  _|  _ _|     | |     | | | | | |     | |     | | | | | |
  12   |_ _ _ _|  _|    _ _ _| |     | | | | | |     | |     | | | | | |
        _ _ _ _| |    _|    _ _|     | | | | | |     | |     | | | | | |
  15   |_ _ _ _ _|  _|     |    _ _ _| | | | | |     | |     | | | | | |
                   |      _|   |  _ _ _|_| | | |     | |     | | | | | |
                   |  _ _|    _| |    _ _ _|_| |     | |     | | | | | |
        _ _ _ _ _ _| |      _|  _|   |  _ _ _ _|     | |     | | | | | |
  28   |_ _ _ _ _ _ _|  _ _|  _|  _ _| |    _ _ _ _ _| |     | | | | | |
                       |  _ _|  _|    _|   |    _ _ _ _|     | | | | | |
                       | |     |     |  _ _|   |    _ _ _ _ _| | | | | |
        _ _ _ _ _ _ _ _| |  _ _|  _ _|_|       |   |  _ _ _ _ _|_| | | |
  31   |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|   | |    _ _ _ _ _|_| |
        _ _ _ _ _ _ _ _ _| | |     |      _|    _ _| |   |  _ _ _ _ _ _|
  39   |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|  _ _|  _ _|   | |
        _ _ _ _ _ _ _ _ _ _| | |       |   |    _|    _ _| |
  42   |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|  _|  _|     |  _ _|
                               | |       |  _|      _| |
                               | |  _ _ _| |      _|  _|
        _ _ _ _ _ _ _ _ _ _ _ _| | |  _ _ _|  _ _|  _|
  60   |_ _ _ _ _ _ _ _ _ _ _ _ _| | |       |  _ _|
                                   | |  _ _ _| |
                                   | | |  _ _ _|
        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
  56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
  72   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  63   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The length of the largest Dyck path of the n-th diagram equals A047836(n).
The semilength equals A174973(n).
a(n) is the area of the n-th diagram.
		

Crossrefs

Programs

  • Mathematica
    A317305[upto_]:=Table[If[AllTrue[Map[Last[#]/First[#]&,Partition[Divisors[n],2,1]],#<=2&],DivisorSigma[1,n],Nothing],{n,upto}];
    A317305[500] (* Paolo Xausa, Jan 12 2023 *)

Formula

a(n) = A000203(A174973(n)).

A244894 Composite numbers n with the property that the symmetric representation of sigma(n) has two parts.

Original entry on oeis.org

10, 14, 22, 26, 34, 38, 44, 46, 52, 58, 62, 68, 74, 76, 78, 82, 86, 92, 94, 102, 106, 114, 116, 118, 122, 124, 134, 136, 138, 142, 146, 148, 152, 158, 164, 166, 172, 174, 178, 184, 186, 188, 194, 202, 206, 212, 214, 218, 222, 226, 232, 236, 244, 246, 248, 254, 258, 262, 268, 274, 278, 282, 284, 292, 296, 298, 302, 314, 316, 318, 326, 328, 332, 334, 344, 346, 348, 354, 356, 358
Offset: 1

Views

Author

Omar E. Pol, Jul 07 2014

Keywords

Comments

Even numbers in A239929.
By definition the two parts of the symmetric representation of sigma(n) are sigma(n)/2 and sigma(n)/2.

Examples

			Illustration of the symmetric representation of sigma(n) in the second quadrant for the first four elements of this sequence: [10, 14, 22, 26].
.
.                             _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                            |  _ _ _ _ _ _ _ _ _ _ _ _ _|
.                            | |
.                            | |
.                            | |  _ _ _ _ _ _ _ _ _ _ _ _
.                      21 _ _| | |  _ _ _ _ _ _ _ _ _ _ _|
.                        |_ _ _| | |
.                     _ _|       | |
.                   _|     18 _ _| |
.                  |         |_ _ _|
.            21 _ _|        _|
.              | |        _|
.     _ _ _ _ _| | 18 _ _|                _ _ _ _ _ _ _ _
.    |  _ _ _ _ _|   | |                 |  _ _ _ _ _ _ _|
.    | |      _ _ _ _| |                 | |
.    | |     |  _ _ _ _|             12 _| |
.    | |     | |                       |_ _|  _ _ _ _ _ _
.    | |     | |                 12 _ _|     |  _ _ _ _ _|
.    | |     | |              _ _ _| |    9 _| |
.    | |     | |             |  _ _ _|  9 _|_ _|
.    | |     | |             | |      _ _| |
.    | |     | |             | |     |  _ _|
.    | |     | |             | |     | |
.    | |     | |             | |     | |
.    | |     | |             | |     | |
.    | |     | |             | |     | |
.    |_|     |_|             |_|     |_|
.
n:    26      22              14      10
.
Sigma(10) =  9 +  9 = 18.
Sigma(14) = 12 + 12 = 24.
Sigma(22) = 18 + 18 = 36.
Sigma(26) = 21 + 21 = 42.
.
		

Crossrefs

Extensions

Extended by R. J. Mathar, Oct 04 2018

A317306 Powers of 2 and even perfect numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 28, 32, 64, 128, 256, 496, 512, 1024, 2048, 4096, 8128, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33550336, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589869056, 8589934592
Offset: 1

Views

Author

Omar E. Pol, Aug 23 2018

Keywords

Comments

Numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).

Examples

			Illustration of initial terms:
.        _ _   _   _   _               _                       _       _
.    1  |_| | | | | | | |             | |                     | |     | |
.    2  |_ _|_| | | | | |             | |                     | |     | |
.        _ _|  _|_| | | |             | |                     | |     | |
.    4  |_ _ _|    _|_| |             | |                     | |     | |
.        _ _ _|  _|  _ _|             | |                     | |     | |
.    6  |_ _ _ _|  _|                 | |                     | |     | |
.        _ _ _ _| |                   | |                     | |     | |
.    8  |_ _ _ _ _|              _ _ _| |                     | |     | |
.                               |  _ _ _|                     | |     | |
.                              _| |                           | |     | |
.                            _|  _|                           | |     | |
.                        _ _|  _|                             | |     | |
.                       |  _ _|                               | |     | |
.                       | |                          _ _ _ _ _| |     | |
.        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
.   16  |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
.                                                _ _| |   |  _ _ _ _ _ _|
.                                            _ _|  _ _|   | |
.                                           |    _|    _ _| |
.                                          _|  _|     |  _ _|
.                                         |  _|      _| |
.                                    _ _ _| |      _|  _|
.                                   |  _ _ _|  _ _|  _|
.                                   | |       |  _ _|
.                                   | |  _ _ _| |
.                                   | | |  _ _ _|
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.   28  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                       | |
.                                       | |
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.   32  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma has only one part, and apart from the central width, the rest of the widths are 1's.
A317307(n) is the area (or the number of cells) in the n-th region of the diagram.
		

Crossrefs

Union of A000079 and A000396 assuming there are no odd perfect numbers.
Subsequence of A174973.
Cf. A249351 (the widths).
Cf. A317307(n) = sigma(a(n)).

A342344 Number of parts in the symmetric representation of antisigma(n).

Original entry on oeis.org

0, 0, 2, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 08 2021

Keywords

Comments

In order to construct this sequence and the diagram of the symmetric representation of antisigma(n) = A024816(n) we use the following rules:
At stage 1 in the first quadrant of the square grid we draw the symmetric representation of sigma(n) using the two Dyck paths described in the rows n and n-1 of A237593. The area of the region that is below the symmetric representation of sigma(n) equals A024916(n-1).
At stage 2 we draw a pair of orthogonal line segments (if it's necessary) such that in the drawing appears totally formed a square n X n. The area of the region that is above the symmetric representation of sigma(n) equals A004125(n). Then we draw a zig-zag path with line segments of length 1 from (0,n-1) to (n-1,0) such that appears a staircase with n-1 steps. The area of the region (or regions) that is below the symmetric representation of sigma(n) and above the staircase equals A244048(n) = A153485(n-1). The area of the region that is below the staircase equals A000217(n-1).
At stage 3 we turn OFF the cells of the symmetric representation of sigma(n) and also the cells that are below the staircase. Then we turn ON the rest of the cells that are in the square n X n. The result is that the ON cell form the diagram of the symmetric representation of antisigma(n) = A024816(n). See the Example section.
For n >= 7; if A237271(n) = 1 or n is a term of A262259 then a(n) = 2 otherwise a(n) = 1.

Examples

			Illustration of the symmetric representation of antisigma(n) = AS(n) = A024816(n), for n = 1..6:
.                                                             y|        _ _
.                                              y|      _ _     |  _ _  |_  |
.                                 y|      _     |  _ _|   |    | |_  |   |_|
.                      y|    _     |  _  |_|    | |_     _|    |   |_|_ _
.             y|        |  _|_|    | |_|_       |   |_  |      |     |_  |
.      y|      |        | |_|      |   |_|      |     |_|      |       |_|
.       |_ _   |_ _ _   |_ _ _ _   |_ _ _ _ _   |_ _ _ _ _ _   |_ _ _ _ _ _ _
.          x        x          x            x              x                x
.
n:        1       2         3           4             5               6
a(n):     0       0         2           3             1               3
AS(n):    0       0         2           3             9               9
.
Illustration of the symmetric representation of antisigma(n) = AS(n) = A024816(n), for n = 7..9:
.                                                y|          _ _ _ _
.                          y|          _ _ _      |  _ _ _ _|       |
.      y|        _ _ _      |  _ _ _  |     |     | |_       _ _    |
.       |  _ _ _|     |     | |_    | |_    |     |   |_    |_  |   |
.       | |_          |     |   |_  |_  |_ _|     |     |_    |_|  _|
.       |   |_       _|     |     |_  |_ _        |       |_      |
.       |     |_    |       |       |_    |       |         |_    |
.       |       |_  |       |         |_  |       |           |_  |
.       |         |_|       |           |_|       |             |_|
.       |_ _ _ _ _ _ _ _    |_ _ _ _ _ _ _ _ _    |_ _ _ _ _ _ _ _ _ _
.                      x                     x                       x
.
n:              7                    8                      9
a(n):           1                    2                      1
AS(n):         20                   21                     32
.
For n = 9 the figures 1, 2 and 3 below show respectively the three stages described in the Comments section as follows:
.
.   y|_ _ _ _ _ 5            y|_ _ _ _ _ _ _ _ _      y|          _ _ _ _
.    |_ _ _ _ _|              |_ _ _ _ _|       |      |  _ _ _ _|       |
.    |         |_ _ 3         | |_      |_ _ R  |      | |_       _ _    |
.    |         |_  |          |   |_    |_  |   |      |   |_    |_  |   |
.    |           |_|_ _ 5     |     |_ T  |_|_ _|      |     |_    |_|  _|
.    |               | |      |       |_      | |      |       |_      |
.    |      Q        | |      |         |_    | |      |         |_    |
.    |               | |      |    W      |_  | |      |           |_  |
.    |               | |      |             |_| |      |             |_|
.    |_ _ _ _ _ _ _ _|_|_     |_ _ _ _ _ _ _ _|_|_     |_ _ _ _ _ _ _ _ _ _
.                       x                        x                        x
.         Figure 1.                Figure 2.                Figure 3.
.         Symmetric                Symmetric                Symmetric
.       representation           representation           representation
.         of sigma(9)              of sigma(9)            of antisigma(9)
.       A000203(9) = 13          A000203(9) = 13          A024816(9) = 32
.           and of                   and of
.     Q = A024916(8) = 56      R = A004125(9) = 12
.                              T = A244048(9) = 20
.                              T = A153485(8) = 20
.                              W = A000217(8) = 36
.
Note that the symmetric representation of antisigma(9) contains a hole formed by three cells because these three cells were the central part of the symmetric representation of sigma(9).
		

Crossrefs

A244250 Triangle read by rows in which row n lists the widths in the first octant of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

For the definition of k-th width of the symmetric representation of sigma(n) see A249351.
Row n list the first n terms of the n-th row of A249351.
It appears that the leading diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
For more information see A237591, A237593.

Examples

			Triangle begins:
1;
1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 1, 0, 0;
1, 1, 1, 1, 1, 2;
1, 1, 1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2;
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

A317307 Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.

Original entry on oeis.org

1, 3, 7, 12, 15, 31, 56, 63, 127, 255, 511, 992, 1023, 2047, 4095, 8191, 16256, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67100672, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179738112, 17179869183
Offset: 1

Views

Author

Omar E. Pol, Aug 25 2018

Keywords

Comments

Sum of divisors of the numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).

Examples

			Illustration of initial terms. a(n) is the area (or the number of cells) of the n-th region of the diagram:
.        _ _   _   _   _               _                       _       _
.   1   |_| | | | | | | |             | |                     | |     | |
.   3   |_ _|_| | | | | |             | |                     | |     | |
.        _ _|  _|_| | | |             | |                     | |     | |
.   7   |_ _ _|    _|_| |             | |                     | |     | |
.        _ _ _|  _|  _ _|             | |                     | |     | |
.  12   |_ _ _ _|  _|                 | |                     | |     | |
.        _ _ _ _| |                   | |                     | |     | |
.  15   |_ _ _ _ _|              _ _ _| |                     | |     | |
.                               |  _ _ _|                     | |     | |
.                              _| |                           | |     | |
.                            _|  _|                           | |     | |
.                        _ _|  _|                             | |     | |
.                       |  _ _|                               | |     | |
.                       | |                          _ _ _ _ _| |     | |
.        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
.  31   |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
.                                                _ _| |   |  _ _ _ _ _ _|
.                                            _ _|  _ _|   | |
.                                           |    _|    _ _| |
.                                          _|  _|     |  _ _|
.                                         |  _|      _| |
.                                    _ _ _| |      _|  _|
.                                   |  _ _ _|  _ _|  _|
.                                   | |       |  _ _|
.                                   | |  _ _ _| |
.                                   | | |  _ _ _|
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.   56  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                       | |
.                                       | |
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.   63  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma of the numbers A317306: 1, 2, 4, 6, 8, 16, 28, 32, ..., has only one part, and apart from the central width, the rest of the widths are 1's.
		

Crossrefs

Union of nonzero terms of A000225 and A139256.
Odd terms give the nonzeros terms of A000225.
Even terms give A139256.
Subsequence of A317305.
Cf. A249351 (the widths).

Programs

  • Mathematica
    DivisorSigma[1, #] &@ Union[2^Range[0, Floor@ Log2@ Last@ #], #] &@ Array[2^(# - 1) (2^# - 1) &@ MersennePrimeExponent@ # &, 7] (* Michael De Vlieger, Aug 25 2018, after Robert G. Wilson v at A000396 *)

Formula

a(n) = A000203(A317306(n)).

A351903 a(n) is the smallest number k such that the symmetric representation of sigma(k) has at least one part of size n.

Original entry on oeis.org

1, 3, 2, 7, 9, 11, 4, 15, 10, 19, 21, 6, 25, 27, 8, 31, 33, 22, 37, 39, 26, 43, 45, 47, 49, 51, 34, 12, 57, 38, 16, 45, 65, 67, 69, 46, 73, 75, 18, 79, 81, 20, 85, 87, 58, 91, 93, 62, 52, 99, 101, 103, 105, 70, 109, 28, 74, 115, 117, 24, 121, 123, 32, 127, 129, 86, 133, 135, 137, 76
Offset: 1

Views

Author

Omar E. Pol, Feb 25 2022

Keywords

Comments

Conjecture 1: there are infinitely many pairs of the form a(x) = y; a(y) = x (see examples).
First differs from A351904 at a(11).
From Hartmut F. W. Hoft, Jun 10 2024: (Start)
For numbers less than or equal to a(2^20), (2^k, 2^(k+1) - 1), 0 <= k <= 19, are the only pairs satisfying a(a(x)) = x; the triple (36, 46, 91) is the only one satisfying a(a(a(x))) = x, and there are no proper order 4 quadruples and no order 5 quintuples, apart from fixed point 1.
Conjecture 2: Only the pairs x = 2^k and y = 2^(k+1) - 1, k >= 0, satisfy a(x) = y and a(y) = x.
A repeated number d in this sequence determines a pair of distinct indices u and v such that d = a(u) = a(v). This means that d is the smallest number for which parts of sizes u and v occur in the symmetric representation of sigma(d), SRS(d). There are 5507 such pairs less than a(2^20). (End)

Examples

			For n = 11 we have that 21 is the smallest number k with at least one part 11 in the symmetric representation of sigma(k), so a(11) = 21.
The symmetric representation of sigma(21) in the first quadrant looks like this:
.
   _ _ _ _ _ _ _ _ _ _ _ 11
  |_ _ _ _ _ _ _ _ _ _ _|
                        |
                        |
                        |_ _ _
                        |_ _  |_ 5
                            |_ _|_
                                | |_ 5
                                |_  |
                                  | |
                                  |_|_ _ _ _ 11
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          | |
                                          |_|
.
For n = 12 we have that 6 is the smallest number k with at least one part 12 in the symmetric representation of sigma(k), so a(12) = 6.
The symmetric representation of sigma(6) in the first quadrant looks like this:
.
   _ _ _ _
  |_ _ _  |_
        |   |_ 12
        |_ _  |
            | |
            | |
            |_|
.
Some pairs of the form a(x) = y; a(y) = x:
   a(2) =  3;   a(3) =  2.
   a(4) =  7;   a(7) =  4.
   a(8) = 15;  a(15) =  8.
  a(16) = 31;  a(31) = 16.
.
The first three repeated terms are 45 = a(23) = a(32), 135 = a(68) = a(104) and 225 = a(113) = a(177), - _Hartmut F. W. Hoft_, Jun 10 2024
		

Crossrefs

Programs

  • Mathematica
    (* a237270[ ] implements improved computing time for A237270 *)
    a237591[n_, k_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[k]]
    a249223[n_, k_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, k]]
    row[n_] := Floor[(Sqrt[8*n+1]-1)/2]
    a237270[n_] := Module[{lw=Transpose[{a237591[n, row[n]], a249223[n, row[n]]}], diag, sL, pL}, diag=Last[lw][[2]]; sL=Split[lw, #[[2]]!=0&]; pL=Map[Apply[Dot, Transpose[#]]&, Select[sL, #[[1, 2]]!=0&]]; If[diag==0, Join[pL, Reverse[pL]], If[Length[pL]>1, Join[Most[pL], {2Last[pL]-diag}, Reverse[Most[pL]]], 2pL-diag]]]
    a351903[n_] := Module[{list=Table[0, n], count0=n, i=1}, While[count0>0, Map[If[list[[#]]==0, list[[#]]=i; count0--]&, Select[a237270[i], #<=n&]]; i++]; list]
    a351903[70] (* Hartmut F. W. Hoft, Jun 10 2024 *)

Formula

a(n) = min( k : exists 1 <= j <= |SRS(k)|, SRS(k)[j] = n ) where |SRS(k)| denotes the number of parts in SRS(k) and SRS(k)[j] its j-th part. - Hartmut F. W. Hoft, Jun 10 2024

Extensions

a(17)-a(70) from Hartmut F. W. Hoft, Jun 10 2024

A320048 One half of composite numbers k with the property that the symmetric representation of sigma(k) has two parts.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 86, 87, 89, 92, 93, 94, 97, 101, 103, 106, 107, 109, 111, 113, 116, 118, 122, 123, 124, 127, 129, 131, 134, 137, 139, 141, 142, 146, 148, 149, 151, 157, 158, 159, 163, 164
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2018

Keywords

Comments

Also, even numbers of A239929 divided by two.
First differs from A101550 at a(51). - R. J. Mathar, Oct 04 2018

Examples

			5 is in the sequence because 10 is a composite number, and the symmetric representation of sigma(10) = 18 has two parts (as shown below), and 10/2 = 5.
.
.     _ _ _ _ _ _ 9
.    |_ _ _ _ _  |
.              | |_
.              |_ _|_
.                  | |_ _ 9
.                  |_ _  |
.                      | |
.                      | |
.                      | |
.                      | |
.                      |_|
.
		

Crossrefs

Cf. A101550, A237271 (number of parts), A237270, A237593, A238443, A238524, A239929 (two parts), A239660, A239929, A239932, A239934, A240062 (k parts), A244894, A245092, A262626, A280107 (four parts).

Formula

a(n) = A244894(n)/2.

A343621 Numbers k such that the largest Dyck path of the symmetric representation of sigma(k) does not touch the largest Dyck path of the symmetric representation of sigma(k+1).

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 71, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239, 251, 255
Offset: 1

Views

Author

Omar E. Pol, Aug 04 2021

Keywords

Comments

This property of a(n) is because the symmetric representation of sigma(a(n)+1) has only one part.
All terms are odd.
First differs from A085493 at a(22).

Crossrefs

Programs

  • Mathematica
    (* Functions a174973Q[ ] is defined in A279029 *)
    a343621[n_] := Select[Range[n], a174973Q[#+1]&]
    a343621[255] (* Hartmut F. W. Hoft, Feb 20 2025 *)

Formula

a(n) = A174973(n+1) - 1.
Previous Showing 11-20 of 22 results. Next