A244894
Composite numbers n with the property that the symmetric representation of sigma(n) has two parts.
Original entry on oeis.org
10, 14, 22, 26, 34, 38, 44, 46, 52, 58, 62, 68, 74, 76, 78, 82, 86, 92, 94, 102, 106, 114, 116, 118, 122, 124, 134, 136, 138, 142, 146, 148, 152, 158, 164, 166, 172, 174, 178, 184, 186, 188, 194, 202, 206, 212, 214, 218, 222, 226, 232, 236, 244, 246, 248, 254, 258, 262, 268, 274, 278, 282, 284, 292, 296, 298, 302, 314, 316, 318, 326, 328, 332, 334, 344, 346, 348, 354, 356, 358
Offset: 1
Illustration of the symmetric representation of sigma(n) in the second quadrant for the first four elements of this sequence: [10, 14, 22, 26].
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _|
. | |
. | |
. | | _ _ _ _ _ _ _ _ _ _ _ _
. 21 _ _| | | _ _ _ _ _ _ _ _ _ _ _|
. |_ _ _| | |
. _ _| | |
. _| 18 _ _| |
. | |_ _ _|
. 21 _ _| _|
. | | _|
. _ _ _ _ _| | 18 _ _| _ _ _ _ _ _ _ _
. | _ _ _ _ _| | | | _ _ _ _ _ _ _|
. | | _ _ _ _| | | |
. | | | _ _ _ _| 12 _| |
. | | | | |_ _| _ _ _ _ _ _
. | | | | 12 _ _| | _ _ _ _ _|
. | | | | _ _ _| | 9 _| |
. | | | | | _ _ _| 9 _|_ _|
. | | | | | | _ _| |
. | | | | | | | _ _|
. | | | | | | | |
. | | | | | | | |
. | | | | | | | |
. | | | | | | | |
. |_| |_| |_| |_|
.
n: 26 22 14 10
.
Sigma(10) = 9 + 9 = 18.
Sigma(14) = 12 + 12 = 24.
Sigma(22) = 18 + 18 = 36.
Sigma(26) = 21 + 21 = 42.
.
Cf.
A237271 (number of parts),
A237270,
A237593,
A238443,
A238524,
A239660,
A239929,
A239932,
A239934,
A245092,
A262626,
A280107 (4 parts).
A244970
Total number of regions after n-th stage in the diagram of the symmetric representation of sigma on the four quadrants.
Original entry on oeis.org
1, 2, 6, 7, 11, 12, 16, 17, 25, 29, 33, 34, 38, 42, 50, 51, 55, 56, 60, 61, 73, 77, 81, 82, 90, 94, 106, 107, 111, 112, 116, 117, 129, 133, 141, 142, 146, 150, 162, 163, 167, 168, 172, 176, 184, 188, 192, 193, 201, 209, 221, 225, 229, 230, 242, 243, 255, 259, 263, 264
Offset: 1
Illustration of the structure after 15 stages (contains 50 regions):
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _
. _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_
. _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_
. | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ |
. _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _
. | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | |
. | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | |
. | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | |
. | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | |
. | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | |
. | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | |
. | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | |
. | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | |
. | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | |
. | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | |
. | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | |
. | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | |
. | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | |
. |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_|
. | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| |
. |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _|
. |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _|
. |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram is also the top view of the stepped pyramid with 15 levels described in A244050. - _Omar E. Pol_, Apr 20 2016
Cf.
A000203,
A004125,
A024916,
A196020,
A235791,
A236104,
A237270,
A237271,
A237590,
A237591,
A237593,
A239050,
A239660,
A239931-
A239934,
A243980,
A244050,
A244360-
A244363,
A244370,
A244371,
A244971,
A245092.
A340846
a(n) is the number of edges in the diagram of the symmetric representation of sigma(n).
Original entry on oeis.org
4, 6, 8, 10, 10, 12, 12, 14, 16, 16, 14, 18, 14, 18, 22, 22, 16, 22, 16, 22, 26, 22, 18, 26, 24, 22, 28, 28, 20, 30, 20, 30, 30, 24, 28, 32, 22, 26, 32, 34, 22, 34, 22, 34, 38, 28, 24, 38, 32, 40, 34, 36, 24, 38, 38, 42, 36, 30, 26, 42, 26, 30, 46, 42, 40, 44, 28
Offset: 1
Illustration of initial terms:
. _ _ _ _
. _ _ _ |_ _ _ |_
. _ _ _ |_ _ _| | |_
. _ _ |_ _ |_ |_ _ |_ _ |
. _ _ |_ _|_ |_ | | | | |
. _ |_ | | | | | | | | |
. |_| |_| |_| |_| |_| |_|
.
n: 1 2 3 4 5 6
a(n): 4 6 8 10 10 12
.
For n = 6 the diagram has 12 edges so a(6) = 12.
On the other hand the diagram has 12 vertices and only one part or region, so applying Euler's formula we have that a(6) = 12 + 1 - 1 = 12.
. _ _ _ _ _
. _ _ _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _ _ | |_ _
. |_ _ _ _| | |_ |_ |
. |_ |_ |_ _ |_|_ _
. |_ _ |_ _ | | |
. | | | | | |
. | | | | | |
. | | | | | |
. |_| |_| |_|
.
n: 7 8 9
a(n): 12 14 16
.
For n = 9 the diagram has 16 edges so a(9) = 16.
On the other hand the diagram has 14 vertices and three parts or regions, so applying Euler's formula we have that a(9) = 14 + 3 - 1 = 16.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
. n a(n) Diagram
--------------------------------------------------------------------------
_
1 4 |_| _
_| | _
2 6 |_ _| | | _
_ _|_| | | _
3 8 |_ _| _| | | | _
_ _| _| | | | | _
4 10 |_ _ _| _|_| | | | | _
_ _ _| _ _| | | | | | _
5 10 |_ _ _| | _| | | | | | | _
_ _ _| _| _|_| | | | | | | _
6 12 |_ _ _ _| _| _ _| | | | | | | | _
_ _ _ _| _| _ _| | | | | | | | | _
7 12 |_ _ _ _| | _| _ _|_| | | | | | | | | _
_ _ _ _| | _| | _ _| | | | | | | | | | _
8 14 |_ _ _ _ _| |_ _| | _ _| | | | | | | | | | | _
_ _ _ _ _| _ _|_| _ _|_| | | | | | | | | | |
9 16 |_ _ _ _ _| | _| _| _ _ _| | | | | | | | | |
_ _ _ _ _| | _| _| _ _| | | | | | | | |
10 16 |_ _ _ _ _ _| | _| | _ _|_| | | | | | |
_ _ _ _ _ _| | _| | _ _ _| | | | | |
11 14 |_ _ _ _ _ _| | _ _| _| | _ _ _| | | | |
_ _ _ _ _ _| | _ _| _|_| _ _ _|_| | |
12 18 |_ _ _ _ _ _ _| | _ _| _ _| | _ _ _| |
_ _ _ _ _ _ _| | _| | _| | _ _ _|
13 14 |_ _ _ _ _ _ _| | | _| _| _| |
_ _ _ _ _ _ _| | |_ _| _| _|
14 18 |_ _ _ _ _ _ _ _| | _ _| _|
_ _ _ _ _ _ _ _| | _ _|
15 22 |_ _ _ _ _ _ _ _| | |
_ _ _ _ _ _ _ _| |
16 22 |_ _ _ _ _ _ _ _ _|
...
Cf.
A237271 (number of parts or regions).
Cf.
A340848 (number of edges in the diagram with subparts).
Cf.
A317109 (total number of edges in the unified diagram).
Cf.
A000203,
A005843,
A196020,
A236104,
A235791,
A237048,
A237270,
A237590,
A237591,
A237593,
A239660,
A245092,
A262626,
A340847.
A243982
Number of divisors of n minus the number of parts in the symmetric representation of sigma(n).
Original entry on oeis.org
0, 1, 0, 2, 0, 3, 0, 3, 0, 2, 0, 5, 0, 2, 1, 4, 0, 5, 0, 5, 0, 2, 0, 7, 0, 2, 0, 5, 0, 7, 0, 5, 0, 2, 1, 8, 0, 2, 0, 7, 0, 7, 0, 4, 3, 2, 0, 9, 0, 3, 0, 4, 0, 7, 0, 7, 0, 2, 0, 11, 0, 2, 1, 6, 0, 7, 0, 4, 0, 5, 0, 11, 0, 2, 2, 4, 1, 6, 0, 9, 0, 2, 0, 11, 0, 2, 0, 7, 0, 11, 1, 4, 0, 2, 0, 11, 0, 3, 1, 8, 0, 6, 0, 7
Offset: 1
For n = 9 the divisors of 9 are [1, 3, 9] and the parts of the symmetric representation of sigma(9) are [5, 3, 5]. In both cases there are three elements, so a(9) = 3 - 3 = 0.
For n = 10 the four divisors of 10 are [1, 2, 5, 10] and the two parts of the symmetric representation of sigma(10) are [9, 9], so a(10) = 4 - 2 = 2.
Cf.
A000005,
A000203,
A071561,
A071562,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A239657,
A239660,
A239931-
A239934.
-
(* Function a237270[] is defined in A237270 *)
a243982[n_]:=Length[Divisors[n] - Length[a237270[n]]
a243982[m_, n_]:=Map[a243982, Range[m,n]]
a243982[1, 104]] (* data *)
(* Hartmut F. W. Hoft, Sep 19 2014 *)
A317306
Powers of 2 and even perfect numbers.
Original entry on oeis.org
1, 2, 4, 6, 8, 16, 28, 32, 64, 128, 256, 496, 512, 1024, 2048, 4096, 8128, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33550336, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589869056, 8589934592
Offset: 1
Illustration of initial terms:
. _ _ _ _ _ _ _ _
. 1 |_| | | | | | | | | | | | | |
. 2 |_ _|_| | | | | | | | | | | |
. _ _| _|_| | | | | | | | | |
. 4 |_ _ _| _|_| | | | | | | |
. _ _ _| _| _ _| | | | | | |
. 6 |_ _ _ _| _| | | | | | |
. _ _ _ _| | | | | | | |
. 8 |_ _ _ _ _| _ _ _| | | | | |
. | _ _ _| | | | |
. _| | | | | |
. _| _| | | | |
. _ _| _| | | | |
. | _ _| | | | |
. | | _ _ _ _ _| | | |
. _ _ _ _ _ _ _ _| | | _ _ _ _ _| | |
. 16 |_ _ _ _ _ _ _ _ _| | | _ _ _ _ _ _| |
. _ _| | | _ _ _ _ _ _|
. _ _| _ _| | |
. | _| _ _| |
. _| _| | _ _|
. | _| _| |
. _ _ _| | _| _|
. | _ _ _| _ _| _|
. | | | _ _|
. | | _ _ _| |
. | | | _ _ _|
. _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
. 28 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |
. | |
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. 32 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma has only one part, and apart from the central width, the rest of the widths are 1's.
A317307(n) is the area (or the number of cells) in the n-th region of the diagram.
Union of
A000079 and
A000396 assuming there are no odd perfect numbers.
Cf.
A000203,
A000225,
A139256,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A237271,
A239660,
A239931,
A239932,
A239933,
A239934,
A244050,
A245092,
A262626.
A342344
Number of parts in the symmetric representation of antisigma(n).
Original entry on oeis.org
0, 0, 2, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2
Offset: 1
Illustration of the symmetric representation of antisigma(n) = AS(n) = A024816(n), for n = 1..6:
. y| _ _
. y| _ _ | _ _ |_ |
. y| _ | _ _| | | |_ | |_|
. y| _ | _ |_| | |_ _| | |_|_ _
. y| | _|_| | |_|_ | |_ | | |_ |
. y| | | |_| | |_| | |_| | |_|
. |_ _ |_ _ _ |_ _ _ _ |_ _ _ _ _ |_ _ _ _ _ _ |_ _ _ _ _ _ _
. x x x x x x
.
n: 1 2 3 4 5 6
a(n): 0 0 2 3 1 3
AS(n): 0 0 2 3 9 9
.
Illustration of the symmetric representation of antisigma(n) = AS(n) = A024816(n), for n = 7..9:
. y| _ _ _ _
. y| _ _ _ | _ _ _ _| |
. y| _ _ _ | _ _ _ | | | |_ _ _ |
. | _ _ _| | | |_ | |_ | | |_ |_ | |
. | |_ | | |_ |_ |_ _| | |_ |_| _|
. | |_ _| | |_ |_ _ | |_ |
. | |_ | | |_ | | |_ |
. | |_ | | |_ | | |_ |
. | |_| | |_| | |_|
. |_ _ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ |_ _ _ _ _ _ _ _ _ _
. x x x
.
n: 7 8 9
a(n): 1 2 1
AS(n): 20 21 32
.
For n = 9 the figures 1, 2 and 3 below show respectively the three stages described in the Comments section as follows:
.
. y|_ _ _ _ _ 5 y|_ _ _ _ _ _ _ _ _ y| _ _ _ _
. |_ _ _ _ _| |_ _ _ _ _| | | _ _ _ _| |
. | |_ _ 3 | |_ |_ _ R | | |_ _ _ |
. | |_ | | |_ |_ | | | |_ |_ | |
. | |_|_ _ 5 | |_ T |_|_ _| | |_ |_| _|
. | | | | |_ | | | |_ |
. | Q | | | |_ | | | |_ |
. | | | | W |_ | | | |_ |
. | | | | |_| | | |_|
. |_ _ _ _ _ _ _ _|_|_ |_ _ _ _ _ _ _ _|_|_ |_ _ _ _ _ _ _ _ _ _
. x x x
. Figure 1. Figure 2. Figure 3.
. Symmetric Symmetric Symmetric
. representation representation representation
. of sigma(9) of sigma(9) of antisigma(9)
. A000203(9) = 13 A000203(9) = 13 A024816(9) = 32
. and of and of
. Q = A024916(8) = 56 R = A004125(9) = 12
. T = A244048(9) = 20
. T = A153485(8) = 20
. W = A000217(8) = 36
.
Note that the symmetric representation of antisigma(9) contains a hole formed by three cells because these three cells were the central part of the symmetric representation of sigma(9).
Cf.
A000203,
A000217,
A000290,
A004125,
A024816,
A024916,
A153485,
A174973,
A236104,
A237270,
A237271,
A237593,
A238443,
A239660,
A239931,
A239932,
A239933,
A239934,
A244048,
A262259.
A244250
Triangle read by rows in which row n lists the widths in the first octant of the symmetric representation of sigma(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 1, 0, 0;
1, 1, 1, 1, 1, 2;
1, 1, 1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2;
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0;
...
Cf.
A000203,
A067742,
A071562,
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A238443,
A239660,
A239932-
A239934,
A240542,
A241008,
A241010,
A244360,
A244361,
A245685,
A246955,
A246956,
A247687,
A249223,
A249351,
A250068,
A250070,
A250071.
A266094
a(n) is the sum of the divisors of the smallest number k such that the symmetric representation of sigma(k) has n parts.
Original entry on oeis.org
1, 4, 13, 32, 104, 228, 576, 1408, 4104, 9824, 19152, 39816, 82944, 196992, 441294, 881280, 1911168, 4539024
Offset: 1
Illustration of the symmetric representation of sigma(9):
.
. _ _ _ _ _ 5
. |_ _ _ _ _|
. |_ _ 3
. |_ |
. |_|_ _ 5
. | |
. | |
. | |
. | |
. |_|
.
For n = 3 we have that 9 is the smallest number whose symmetric representation of sigma has three parts: [5, 3, 5], so a(3) = 5 + 3 + 5 = 13, equaling the sum of divisors of 9: sigma(9) = 1 + 3 + 9 = 13.
For n = 7 we have that 357 is the smallest number whose symmetric representation of sigma has seven parts: [179, 61, 29, 38, 29, 61, 179], so a(7) = 179 + 61 + 29 + 38 + 29 + 61 + 179 = 576, equaling the sum of divisors of 357: sigma(357) = 1 + 3 + 7 + 17 + 21 + 51 + 119 + 357 = 576.
Cf.
A000203,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A239931-
A239934,
A239663,
A239665,
A240062,
A245092,
A262626.
A299778
Irregular triangle read by rows: T(n,k) is the part that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned part is already associated to a previous peak or if there is no part adjacent to the k-th peak, with n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 28, 0, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 8, 0, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 39, 0, 0, 0, 0, 10, 0, 0, 0, 10, 42, 0, 0, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 60, 0, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1
Triangle begins (rows 1..28):
1;
3;
2, 2;
7, 0;
3, 3;
12, 0, 0;
4, 0, 4;
15, 0, 0;
5, 3, 5;
9, 0, 9, 0;
6, 0, 0, 6;
28, 0, 0, 0;
7, 0, 0, 7;
12, 0, 12, 0;
8, 8, 0, 0, 8;
31, 0, 0, 0, 0;
9, 0, 0, 0, 9;
39, 0, 0, 0, 0;
10, 0, 0, 0, 10;
42, 0, 0, 0, 0;
11, 5, 0, 5, 0, 11;
18, 0, 0, 0, 18, 0;
12, 0, 0, 0, 0, 12;
60, 0, 0, 0, 0, 0;
13, 0, 5, 0, 0, 13;
21, 0, 0, 0 21, 0;
14, 6, 0, 6, 0, 14;
56, 0, 0, 0, 0, 0, 0;
...
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
. 12 _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
. | | |_ _ _ _ _ _ _|
. 0 _| | |
. |_ _|9 _ _ _ _ _ _ |_ _ 0
. 12 _ _| | _ _ _ _ _|_ _ _ _ _ 5 |_ 0
. 0 _ _ _| | 0 _| | |_ _ _ _ _| |
. | _ _ _| 9 _|_ _| |_ _ 3 |_ _ _ 7
. | | 0 _ _| | 12 _ _ _ _ |_ | | |
. | | | _ _| 0 _| _ _ _|_ _ _ 3 |_|_ _ 5 | |
. | | | | 0 _| | |_ _ _| | | | |
. | | | | | _ _| |_ _ 3 | | | |
. | | | | | | 3 _ _ | | | | | |
. | | | | | | | _|_ 1 | | | | | |
. _|_| _|_| _|_| _|_| |_| _|_| _|_| _|_| _
. | | | | | | | | | | | | | | | |
. | | | | | | |_|_ _ _| | | | | | | |
. | | | | | | 2 |_ _|_ _| _| | | | | | |
. | | | | |_|_ 2 |_ _ _| 0 _ _| | | | | |
. | | | | 4 |_ 7 _| _ _|0 | | | |
. | | |_|_ _ 0 |_ _ _ _ | _| _ _ _| | | |
. | | 6 |_ |_ _ _ _|_ _ _ _| | 0 _| _ _|0 | |
. |_|_ _ _ 0 |_ 4 |_ _ _ _ _| _| | _ _ _| |
. 8 | |_ _ 0 | 15| _| | _ _ _|
. |_ | |_ _ _ _ _ _ | _ _| 0 _| | 0
. 8 |_ |_ |_ _ _ _ _ _|_ _ _ _ _ _| | 0 _| _|
. 0 |_ _| 6 |_ _ _ _ _ _ _| _ _| _| 0
. 0 | 28| _ _| 0
. |_ _ _ _ _ _ _ _ | | 0
. |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
. 8 |_ _ _ _ _ _ _ _ _|
. 31
.
The diagram contains A237590(16) = 27 parts.
For the construction of the spiral see A239660.
The number of nonzero terms in row n is
A237271(n).
The triangle with n rows contain
A237590(n) nonzero terms.
Cf.
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A239657,
A239660,
A239931-
A239934,
A240542,
A244050,
A245092,
A250068,
A250070,
A261699,
A262626,
A279387,
A279388,
A279391,
A280850,
A280851.
A317307
Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.
Original entry on oeis.org
1, 3, 7, 12, 15, 31, 56, 63, 127, 255, 511, 992, 1023, 2047, 4095, 8191, 16256, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67100672, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179738112, 17179869183
Offset: 1
Illustration of initial terms. a(n) is the area (or the number of cells) of the n-th region of the diagram:
. _ _ _ _ _ _ _ _
. 1 |_| | | | | | | | | | | | | |
. 3 |_ _|_| | | | | | | | | | | |
. _ _| _|_| | | | | | | | | |
. 7 |_ _ _| _|_| | | | | | | |
. _ _ _| _| _ _| | | | | | |
. 12 |_ _ _ _| _| | | | | | |
. _ _ _ _| | | | | | | |
. 15 |_ _ _ _ _| _ _ _| | | | | |
. | _ _ _| | | | |
. _| | | | | |
. _| _| | | | |
. _ _| _| | | | |
. | _ _| | | | |
. | | _ _ _ _ _| | | |
. _ _ _ _ _ _ _ _| | | _ _ _ _ _| | |
. 31 |_ _ _ _ _ _ _ _ _| | | _ _ _ _ _ _| |
. _ _| | | _ _ _ _ _ _|
. _ _| _ _| | |
. | _| _ _| |
. _| _| | _ _|
. | _| _| |
. _ _ _| | _| _|
. | _ _ _| _ _| _|
. | | | _ _|
. | | _ _ _| |
. | | | _ _ _|
. _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
. 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |
. | |
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. 63 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma of the numbers A317306: 1, 2, 4, 6, 8, 16, 28, 32, ..., has only one part, and apart from the central width, the rest of the widths are 1's.
Odd terms give the nonzeros terms of
A000225.
Cf.
A000203,
A000396,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A237271,
A239660,
A239931,
A239932,
A239933,
A239934,
A244050,
A245092,
A262626,
A317306.
-
DivisorSigma[1, #] &@ Union[2^Range[0, Floor@ Log2@ Last@ #], #] &@ Array[2^(# - 1) (2^# - 1) &@ MersennePrimeExponent@ # &, 7] (* Michael De Vlieger, Aug 25 2018, after Robert G. Wilson v at A000396 *)
Comments