cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A243543 Smallest number whose list of divisors contains n distinct digits (in base 10).

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 72, 54, 108
Offset: 1

Views

Author

Jaroslav Krizek, Jun 19 2014

Keywords

Comments

Finite sequence with 10 terms.

Examples

			a(9) = 54 because 54 is the smallest number whose list of divisors contains 9 distinct digits; the list of divisors of 54: (1, 2, 3, 6, 9, 18, 27, 54) contains 9 distinct digits (1, 2, 3, 4, 5, 6, 7, 8, 9).
		

Crossrefs

Cf. Sequences of numbers n such that list of divisors of n contains k distinct digits: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.

A257219 Numbers that have at least one divisor containing the digit 2 in base 10.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 2.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.
All even numbers and all numbers which have a digit "2" themselves are trivially in this sequence. The first terms not of this form are the odd multiples of odd numbers between 21 and 29: { 63 = 3*21, 69 = 3*23, 75 = 3*25, 81 = 3*27, 87 = 3*29, 105 = 5*21, 115 = 5*23, 135 = 5*27, 145 = 5*29, ...}. - M. F. Hasler, Apr 22 2015
A011532 (numbers that contain a 2) is a subsequence. - Michel Marcus, May 19 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 2.
In the same way all even numbers have the divisor 2 and thus are in this sequence; numbers N in { 20,...,29, 120,...,129, 200,...,299 } have the digit 2 in N which is divisor of itself. - _M. F. Hasler_, Apr 22 2015
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [2] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 2] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
  • PARI
    is(n)=!bittest(n,0)||setsearch(Set(digits(n)),2)||fordiv(n,d,setsearch(Set(digits(d)),2)&&return(1)) \\ M. F. Hasler, Apr 22 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 22 2015

A257220 Numbers that have at least one divisor containing the digit 3 in base 10.

Original entry on oeis.org

3, 6, 9, 12, 13, 15, 18, 21, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 46, 48, 51, 52, 53, 54, 57, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 81, 83, 84, 86, 87, 90, 91, 92, 93, 96, 99, 102, 103, 104, 105, 106, 108
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 3.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [3] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 3] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
  • PARI
    is(n)=fordiv(n,d, if(setsearch(Set(digits(d)),3), return(1))); 0 \\ Charles R Greathouse IV, Apr 30 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 30 2015

A257221 Numbers that have at least one divisor containing the digit 4 in base 10.

Original entry on oeis.org

4, 8, 12, 14, 16, 20, 24, 28, 32, 34, 36, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 56, 60, 64, 68, 70, 72, 74, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 108, 112, 114, 116, 120, 123, 124, 126, 128, 129, 132, 134, 135, 136, 138, 140, 141
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 4.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			16 is in sequence because the list of divisors of 16: (1, 2, 4, 8, 16) contains digit 4.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [4] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
    
  • Mathematica
    Select[Range@ 141, Part[Plus @@ DigitCount@ Divisors@ #, 4] > 0 &] (* Michael De Vlieger, Apr 20 2015 *)
    Select[Range[200],Count[Flatten[IntegerDigits/@Divisors[#]],4]>0&] (* Harvey P. Dale, May 05 2022 *)
  • PARI
    is(n)=fordiv(n,d, if(setsearch(Set(digits(d)),4), return(1))); 0 \\ Charles R Greathouse IV, Apr 30 2015

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 30 2015

A257222 Numbers that have at least one divisor containing the digit 5 in base 10.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 70, 75, 80, 85, 90, 95, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 165
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 5.
Sequences of numbers k whose concatenation of divisors contains a digit j in base 10 for 0 <= j <= 9: A209932 for j = 0, A000027 for j = 1, A257219 for j = 2, A257220 for j = 3, A257221 for j = 4, A257222 for j = 5, A257223 for j = 6, A257224 for j = 7, A257225 for j = 8, A257226 for j = 9.

Examples

			20 is in sequence because the list of divisors of 20: (1, 2, 4, 5, 10, 20) contains digit 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | [5] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 5] > 0 &]
    Select[Range[200],Max[DigitCount[Divisors[#],10,5]]>0&] (* Harvey P. Dale, Sep 15 2018 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 5), return(1))); 0
    
  • Perl
    use ntheory ":all"; for my $n (1..1000) { say $n if scalar(grep {/5/} divisors($n)) } # Dana Jacobsen, May 07 2015
    
  • Perl
    use ntheory ":all"; my @a257222 = grep { scalar(grep {/5/} divisors($)) } 1..1000; # _Dana Jacobsen, May 07 2015
  • Python
    from sympy import divisors
    A257222_list = [n for n in range(1,10**3) if '5' in set().union(*(set(str(d)) for d in divisors(n,generator=True)))] # Chai Wah Wu, May 06 2015
    

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257223 Numbers that have at least one divisor containing the digit 6 in base 10.

Original entry on oeis.org

6, 12, 16, 18, 24, 26, 30, 32, 36, 42, 46, 48, 52, 54, 56, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 78, 80, 84, 86, 90, 92, 96, 102, 104, 106, 108, 112, 114, 116, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 144, 146, 150, 152, 156, 160, 161, 162
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 6.
A011536 (numbers that contain a 6) is a subsequence. - Michel Marcus, May 25 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 6.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257224 (7), A257225 (8), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [6] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 6] > 0 &]
    Select[Range[200],Count[Flatten[IntegerDigits/@Divisors[#]],6]>0&] (* Harvey P. Dale, Nov 05 2021 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 6), return(1))); 0

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257224 Numbers that have at least one divisor containing the digit 7 in base 10.

Original entry on oeis.org

7, 14, 17, 21, 27, 28, 34, 35, 37, 42, 47, 49, 51, 54, 56, 57, 63, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 91, 94, 97, 98, 102, 105, 107, 108, 111, 112, 114, 117, 119, 126, 127, 133, 134, 135, 136, 137, 140, 141, 142, 144, 146, 147, 148
Offset: 1

Views

Author

Jaroslav Krizek, May 05 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 7.
A011537 (numbers that contain a 7) is a subsequence. - Michel Marcus, May 25 2015

Examples

			14 is in sequence because the list of divisors of 14: (1, 2, 7, 14) contains digit 7.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257225 (8), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [7] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 7] > 0 &]
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 7), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257224_gen(): return filter(lambda n:any('7' in str(d) for d in divisors(n, generator=True)), count(1))
    A257224_list = list(islice(A257224_gen(), 60)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257225 Numbers that have at least one divisor containing the digit 8 in base 10.

Original entry on oeis.org

8, 16, 18, 24, 28, 32, 36, 38, 40, 48, 54, 56, 58, 64, 68, 72, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 96, 98, 104, 108, 112, 114, 116, 118, 120, 126, 128, 136, 138, 140, 144, 148, 152, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 8.
A011538 (numbers that contain an 8) is a subsequence. - Michel Marcus, May 19 2015

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 8.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257224 (7), A257226 (9).

Programs

  • Magma
    [n: n in [1..1000] | [8] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Maple
    select(t -> has(map(convert,numtheory:-divisors(t),base,10),8), [$1..200]); # Robert Israel, May 14 2015
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 8] > 0 &]
    Select[Range[200],SequenceCount[Flatten[IntegerDigits/@Divisors[#]],{8}]> 0&] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 8), return(1))); 0
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257225_gen(): return filter(lambda n:any('8' in str(d) for d in divisors(n, generator=True)), count(1))
    A257225_list = list(islice(A257225_gen(), 58)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

Extensions

Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.

A257226 Numbers that have at least one divisor containing the digit 9 in base 10.

Original entry on oeis.org

9, 18, 19, 27, 29, 36, 38, 39, 45, 49, 54, 57, 58, 59, 63, 69, 72, 76, 78, 79, 81, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 108, 109, 114, 116, 117, 118, 119, 126, 129, 133, 135, 138, 139, 144, 145, 147, 149, 152, 153, 156, 158, 159, 162, 169, 171, 174
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2015

Keywords

Comments

Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 9.
A011539 (numbers that contain a 9) is a subsequence.

Examples

			18 is in sequence because the list of divisors of 18: (1, 2, 3, 6, 9, 18) contains digit 9.
		

Crossrefs

Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257224 (7), A257225 (8).

Programs

  • Magma
    [n: n in [1..1000] | [9] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))];
    
  • Mathematica
    Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 9] > 0 &] (* after Michael De Vlieger *)
  • PARI
    is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 9), return(1))); 0 \\ after Charles R Greathouse IV
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    def A257226_gen(): return filter(lambda n:any('9' in str(d) for d in divisors(n,generator=True)),count(1))
    A257226_list = list(islice(A257226_gen(),20)) # Chai Wah Wu, Dec 27 2021

Formula

a(n) ~ n.

A243363 Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).

Original entry on oeis.org

203457869, 203465789, 203465897, 203468579, 203475869, 203478659, 203485697, 203485769, 203495867, 203548967, 203564897, 203568947, 203574689, 203584679, 203584769, 203594687, 203596847, 203598467, 203645879, 203645987, 203648957, 203654987, 203659487, 203674589
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Primes made up of distinct digits except 1.
There are no composite numbers with divisors containing all the digits 0-9 and each digit appears exactly once.
Subsequence of A029743 (primes with distinct digits).
Numbers n such that A243360(n) = 9876543210.
Sequence contains 19558 terms, the last term is a(19558) = 987625403.

Crossrefs

Programs

  • Magma
    [n: n in [1..203457879] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 9876543210];
    
  • Mathematica
    Select[Range[203*10^6,204*10^6],Sort[Flatten[IntegerDigits/@ Divisors[#]]] == Range[0,9]&] (* Harvey P. Dale, Aug 22 2016 *)
  • Python
    # generates entire sequence
    from sympy import isprime
    from itertools import permutations as perms
    dist = (int("".join(p)) for p in perms("023456789", 9) if p[0] != "0")
    afull = [k for k in dist if isprime(k)]
    print(afull[:24]) # Michael S. Branicky, Aug 04 2022
Previous Showing 11-20 of 24 results. Next