cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A344123 Decimal expansion of Sum_{i > 0} 1/A001481(i)^2.

Original entry on oeis.org

1, 4, 2, 6, 5, 5, 6, 0, 6, 3, 5, 1, 2, 5, 9, 2, 8, 7, 8, 6, 9, 6, 8, 0, 9, 3, 1, 6, 1, 5, 5, 0, 8, 1, 6, 3, 6, 1, 2, 7, 6, 6, 9, 3, 6, 3, 6, 7, 7, 0, 3, 9, 0, 2, 8, 8, 7, 9, 9, 2, 2, 3, 0, 4, 4, 1, 2, 9, 6, 0, 4, 5, 2, 8, 6, 1, 5, 1, 9, 0, 1, 9, 1, 4, 6, 7
Offset: 1

Views

Author

A.H.M. Smeets, May 09 2021

Keywords

Comments

This constant can be considered as an equivalent of zeta(2) (= Pi^2/6 = A013661), where Euler's zeta(2) is over all positive integers, with prime elements in A000040, while this constant is over all positive integers that can be written as the sum of two squares (A001481) with prime elements given in A055025.
Close to the value of e^(3/2)/Pi.

Examples

			1.4265560635125928786968093161550816361276693636770...
		

Crossrefs

Formula

Equals Sum_{i > 0} 1/A001481(i)^2.
Equals Product_{i > 0} 1/(1-A055025(i)^-2).
Equals 1/(1-prime(1)^(-2)) * Product_{i>1 and prime(i) == 1 (mod 4)} 1/(1-prime(i)^(-2)) * Product_{i>1 and prime(i) == 3 (mod 4)} 1/(1-prime(i)^(-4)), where prime(n) = A000040(n).
Equals (4/3)/(A243379*A334448).
Equals zeta_{2,0} (2) * zeta_{4,1} (2) * zeta_{4,3} (4), where zeta_{4,1} (2) = A175647 and zeta_{2,0} (s) = 2^s/(2^s - 1).

A087691 Squares of primes of the form 4*k+3.

Original entry on oeis.org

9, 49, 121, 361, 529, 961, 1849, 2209, 3481, 4489, 5041, 6241, 6889, 10609, 11449, 16129, 17161, 19321, 22801, 26569, 27889, 32041, 36481, 39601, 44521, 49729, 51529, 57121, 63001, 69169, 73441, 80089, 94249, 96721, 109561, 120409, 128881
Offset: 1

Views

Author

Cino Hilliard, Sep 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[4*Range[0,100]+3,PrimeQ]^2 (* Harvey P. Dale, Sep 10 2012 *)
  • PARI
    p4np3(n)= forprime(x=3,n,if(x%4==3,y=x*x; print1(y, ", ")));

Formula

a(n) = A002145(n)^2.
a(n) ~ 4n^2 * (log n)^2. - Charles R Greathouse IV, Sep 20 2016
From Amiram Eldar, Dec 02 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A243381.
Product_{n>=1} (1 - 1/a(n)) = A243379. (End)

Extensions

More terms from Ray Chandler, Oct 26 2003

A066792 a(n) = phi(n^3 + n^2 + n + 1).

Original entry on oeis.org

1, 2, 8, 16, 64, 48, 216, 160, 288, 320, 1000, 480, 1344, 768, 1568, 1792, 4096, 1344, 4320, 2880, 4800, 3840, 8448, 3328, 11520, 7488, 12168, 6912, 17472, 6720, 24960, 13824, 16000, 13824, 25344, 14688, 46656, 19584, 26112, 24320, 64000, 19488
Offset: 0

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

Crossrefs

Cf. A000010 (phi), A053698, A243379.

Programs

  • Mathematica
    Prepend[EulerPhi[Total[#^Range[0,3]]]&/@Range[45],1]  (* Harvey P. Dale, Feb 19 2011 *)
  • PARI
    a(n) = eulerphi(n^3 + n^2 + n + 1); \\ Harry J. Smith, Mar 27 2010

Formula

a(n) = A000010(A053698(n)). - Michel Marcus, Sep 06 2022
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (3/16) * Product_{primes p == 1 (mod 4)} (1 - 3/p^2) * Product_{primes p == 3 (mod 4)} (1 - 1/p^2) = 0.13549316168... . - Amiram Eldar, Dec 09 2024

A340617 Decimal expansion of Product_{p prime, p == 3 (mod 4)} (1 - 2/p^2).

Original entry on oeis.org

7, 2, 1, 0, 9, 7, 9, 7, 8, 2, 4, 0, 7, 5, 2, 4, 1, 5, 8, 3, 2, 4, 3, 1, 1, 7, 7, 5, 0, 3, 5, 0, 6, 4, 1, 9, 3, 3, 2, 3, 8, 0, 0, 9, 4, 8, 8, 2, 2, 7, 0, 9, 0, 4, 4, 8, 6, 4, 2, 7, 7, 4, 6, 9, 5, 1, 2, 7, 0, 9, 1, 2, 6, 0, 3, 6, 6, 0, 3, 9, 4, 7, 1, 7, 2, 0, 6, 5, 0, 1, 7, 3, 7, 9, 8, 4, 9, 3, 6, 2, 2, 8, 8, 7, 6, 5
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 13 2021

Keywords

Examples

			0.7210979782407524158324311775035064193323800948822709044864277469512...
		

Crossrefs

Programs

  • Maple
    Digits := 150;
    with(NumberTheory);
    DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;
    alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;
    beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;
    pzetamod43 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(beta((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;
    evalf(exp(-Sum(2^t*pzetamod43(2*t, 70)/t, t = 1..200)));
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 3, 2], digits]], 10, digits-1][[1]]

Formula

Equals 2*A065474/A335963.
Previous Showing 11-14 of 14 results.