A251664
E.g.f.: exp(4*x*G(x)^3) / G(x) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 3, 26, 430, 10872, 373664, 16295152, 862486944, 53729041280, 3851892172288, 312411790027776, 28284076403710208, 2827642792215049216, 309396856974126428160, 36777992050266076762112, 4719560392385576181243904, 650284066459536965937364992, 95752333835299098922624876544, 15005473998204120386383308390400
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 26*x^2/2! + 430*x^3/3! + 10872*x^4/4! + 373664*x^5/5! +...
such that A(x) = exp(4*x*G(x)^3) / G(x)
where G(x) = 1 + x*G(x)^4 is the g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
-
Table[Sum[4^k * n!/k! * Binomial[4*n-k-2,n-k] * (3*k-1)/(3*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^4 +x*O(x^n)); n!*polcoeff(exp(4*x*G^3)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 4^k * n!/k! * binomial(4*n-k-2,n-k) * (3*k-1)/(3*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A251665
E.g.f.: exp(5*x*G(x)^4) / G(x) where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
Original entry on oeis.org
1, 4, 47, 1034, 34349, 1540480, 87311275, 5991370390, 483100288985, 44778459212540, 4691799973171175, 548418557098305250, 70754785462138421125, 9987462340422594014200, 1531136319790275407365475, 253347224928445454055920750, 45001449932636667231257800625, 8541130421294458307989700672500
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 1034*x^3/3! + 34349*x^4/4! + 1540480*x^5/5! +...
such that A(x) = exp(5*x*G(x)^4) / G(x)
where G(x) = 1 + x*G(x)^5 is the g.f. of A002294:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 +...
-
Table[Sum[5^k * n!/k! * Binomial[5*n-k-2,n-k] * (4*k-1)/(4*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^5 +x*O(x^n)); n!*polcoeff(exp(5*x*G^4)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 5^k * n!/k! * binomial(5*n-k-2,n-k) * (4*k-1)/(4*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A251666
E.g.f.: exp(6*x*G(x)^5) / G(x) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
Original entry on oeis.org
1, 5, 74, 2028, 83352, 4607496, 321156000, 27064420704, 2677510124928, 304299947999232, 39075730095810816, 5595805388119057920, 884245579070535235584, 152843879008651568329728, 28688663318934190485491712, 5811091829207760774331662336, 1263471121829937070180445552640
Offset: 0
E.g.f.: A(x) = 1 + 5*x + 74*x^2/2! + 2028*x^3/3! + 83352*x^4/4! + 4607496*x^5/5! +...
such that A(x) = exp(6*x*G(x)^5) / G(x)
where G(x) = 1 + x*G(x)^6 is the g.f. of A002295:
G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
-
Table[Sum[6^k * n!/k! * Binomial[6*n-k-2,n-k] * (5*k-1)/(5*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^6 +x*O(x^n)); n!*polcoeff(exp(6*x*G^5)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 6^k * n!/k! * binomial(6*n-k-2,n-k) * (5*k-1)/(5*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A251667
E.g.f.: exp(7*x*G(x)^6) / G(x) where G(x) = 1 + x*G(x)^7 is the g.f. of A002296.
Original entry on oeis.org
1, 6, 107, 3508, 171741, 11280842, 933014767, 93212094024, 10925496633401, 1470493880790382, 223555405538724819, 37892802280129883324, 7086076189702624109653, 1449303152891376476830962, 321848482510755456019058519, 77124029495405859198280522768
Offset: 0
E.g.f.: A(x) = 1 + 6*x + 107*x^2/2! + 3508*x^3/3! + 171741*x^4/4! + 11280842*x^5/5! +...
such that A(x) = exp(7*x*G(x)^6) / G(x)
where G(x) = 1 + x*G(x)^7 is the g.f. of A002296:
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...
-
Table[Sum[7^k * n!/k! * Binomial[7*n-k-2,n-k] * (6*k-1)/(6*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^7 +x*O(x^n)); n!*polcoeff(exp(7*x*G^6)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 7^k * n!/k! * binomial(7*n-k-2,n-k) * (6*k-1)/(6*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A251668
E.g.f.: exp(8*x*G(x)^7) / G(x) where G(x) = 1 + x*G(x)^8 is the g.f. of A007556.
Original entry on oeis.org
1, 7, 146, 5570, 316376, 24070168, 2303562256, 266121810928, 36054510934400, 5607388438811648, 984840629002206464, 192818670654633123328, 41644201910970978233344, 9836055425319263031070720, 2522269785922810486307846144, 697878768774876825573221076992, 207239855326220163290204654895104
Offset: 0
E.g.f.: A(x) = 1 + 7*x + 146*x^2/2! + 5570*x^3/3! + 316376*x^4/4! + 24070168*x^5/5! +...
such that A(x) = exp(8*x*G(x)^7) / G(x)
where G(x) = 1 + x*G(x)^8 is the g.f. of A007556:
G(x) = 1 + x + 8*x^2 + 92*x^3 + 1240*x^4 + 18278*x^5 + 285384*x^6 +...
-
Table[Sum[8^k * n!/k! * Binomial[8*n-k-2,n-k] * (7*k-1)/(7*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^8 +x*O(x^n)); n!*polcoeff(exp(8*x*G^7)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 8^k * n!/k! * binomial(8*n-k-2,n-k) * (7*k-1)/(7*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A251669
E.g.f.: exp(9*x*G(x)^8) / G(x) where G(x) = 1 + x*G(x)^9 is the g.f. of A062994.
Original entry on oeis.org
1, 8, 191, 8310, 537117, 46444164, 5047987707, 662002733394, 101779688986425, 17959176833948928, 3578033935192224951, 794559576204365478318, 194620831940208238831701, 52129134740350115227721340, 15158273263608217360939225587, 4755712518628181890216523759754
Offset: 0
E.g.f.: A(x) = 1 + 8*x + 191*x^2/2! + 8310*x^3/3! + 537117*x^4/4! + 46444164*x^5/5! +...
such that A(x) = exp(9*x*G(x)^8) / G(x)
where G(x) = 1 + x*G(x)^9 is the g.f. of A062994:
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
-
Table[Sum[9^k * n!/k! * Binomial[9*n-k-2,n-k] * (8*k-1)/(8*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G = 1 + x*G^9 +x*O(x^n)); n!*polcoeff(exp(9*x*G^8)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-2,n-k) * (8*k-1)/(8*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A251670
E.g.f.: exp(10*x*G(x)^9) / G(x) where G(x) = 1 + x*G(x)^10 is the g.f. of A059968.
Original entry on oeis.org
1, 9, 242, 11824, 856824, 82986080, 10097121280, 1481787433920, 254874712419200, 50305519571800960, 11209381628379724800, 2783746998856794752000, 762476362390276346060800, 228363072063685762536960000, 74247696727054926125971251200, 26044746725090717967744412672000
Offset: 0
E.g.f.: A(x) = 1 + 9*x + 242*x^2/2! + 11824*x^3/3! + 856824*x^4/4! + 82986080*x^5/5! +...
such that A(x) = exp(10*x*G(x)^9) / G(x)
where G(x) = 1 + x*G(x)^10 is the g.f. of A059958:
G(x) = 1 + x + 10*x^2 + 145*x^3 + 2470*x^4 + 46060*x^5 + 910252*x^6 +...
-
Table[Sum[10^k * n!/k! * Binomial[10*n-k-2,n-k] * (9*k-1)/(9*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G = 1 + x*G^10 +x*O(x^n)); n!*polcoeff(exp(10*x*G^9)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-2,n-k) * (8*k-1)/(8*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A274760
The multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0
Some a(n) formulas, see A036039:
a(0) = 1
a(1) = 1*x(1)
a(2) = 1*x(2) + 1*x(1)^2
a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, arXiv:math/0205301 [math.CO], 2002; Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
-
nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
-
b[n_] := (2*n - 1)!!^2;
a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)
A213507
E.g.f.: exp( Sum_{n>=1} A000108(n)*x^n/n ), where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.
Original entry on oeis.org
1, 1, 3, 17, 149, 1809, 28399, 550297, 12732873, 343231361, 10576764251, 367054970721, 14173669352413, 602974492511377, 28027436035348359, 1413479599558432169, 76879014760731439889, 4486205132570631391617, 279595430611791210216883, 18536284947404377562405041
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 149*x^4/4! + 1809*x^5/5! + ...
such that
log(A(x)) = x + 2*x^2/2 + 5*x^3/3 + 14*x^4/4 + 42*x^5/5 + 132*x^6/6 + 429*x^7/7 + 1430*x^8/8 + ... + A000108(n)*x^n/n + ...
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See p. 7.
-
With[{nn=20},CoefficientList[Series[(4Exp[1-2/(Sqrt[1-4x]+1)])/ (Sqrt[ 1-4x]+1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 18 2016 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1,n,binomial(2*m,m)/(m+1)*x^m/m)+x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
A304788
Expansion of e.g.f. exp(Sum_{k>=1} binomial(2*k,k)*x^k/(k + 1)!).
Original entry on oeis.org
1, 1, 3, 12, 59, 343, 2295, 17307, 144751, 1326377, 13189945, 141271298, 1619488645, 19766050827, 255693112641, 3492065507376, 50180426293255, 756444290843433, 11930511611596861, 196404976143077964, 3367697323914503113, 60029614473492823771, 1110430594720934758781
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 59*x^4/4! + 343*x^5/5! + 2295*x^6/6! + 17307*x^7/7! + ...
-
a:=series(exp(add(binomial(2*k,k)*x^k/(k+1)!,k=1..100)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Exp[Sum[CatalanNumber[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[Exp[2 x] (BesselI[0, 2 x] - BesselI[1, 2 x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[CatalanNumber[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
Comments