cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A244924 Odd integers n such that for every integer k>0, n*2^k-1 has a divisor in the set { 3, 5, 7, 13, 17, 97, 673 }.

Original entry on oeis.org

73520771, 108288041, 127499219, 141239113, 160792529, 198545797, 205293103, 217763051, 227258803, 262056089, 269931509, 303224819, 307060289, 353982553, 368427809, 430034677, 525141899, 581603107, 585721991, 600824113, 612314921, 644606467, 718519237, 723522461
Offset: 1

Views

Author

Pierre CAMI, Jul 08 2014

Keywords

Comments

For n > 96 a(n) = a(n-96) + 3029691210, the first 96 values are given in the table.

Crossrefs

Formula

For n > 96 a(n)=a(n-96) + 3029691210

A271027 a(n) = 3661529 + 11184810*n.

Original entry on oeis.org

3661529, 14846339, 26031149, 37215959, 48400769, 59585579, 70770389, 81955199, 93140009, 104324819, 115509629, 126694439, 137879249, 149064059, 160248869, 171433679, 182618489, 193803299, 204988109, 216172919, 227357729, 238542539, 249727349, 260912159, 272096969, 283281779, 294466589
Offset: 0

Views

Author

Altug Alkan, Mar 29 2016

Keywords

Comments

a(n) and a(n) + 14 are the members of A101036.
14 appears as a minimum difference between Riesel numbers for the first 15000 terms that are listed in b-file of A101036.

Examples

			a(1) = 3661529 + 11184810*1 = 14846339.
		

Crossrefs

Programs

  • Magma
    [3661529 + 11184810*n : n in [0..40]]; // Wesley Ivan Hurt, Apr 02 2016
  • Maple
    A271027:=n->3661529 + 11184810*n: seq(A271027(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
  • Mathematica
    CoefficientList[Series[(3661529 + 7523281 x)/(1 - x)^2, {x, 0, 26}], x] (* Michael De Vlieger, Mar 29 2016 *)
    LinearRecurrence[{2,-1},{3661529,14846339},30] (* Harvey P. Dale, Sep 10 2019 *)
  • PARI
    a(n) = 3661529 + 11184810*n;
    
  • PARI
    x='x+O('x^99); Vec((3661529+7523281*x)/(1-x)^2)
    
  • Python
    for n in range(0,100):print(3661529+11184810*n) # Soumil Mandal, Apr 03 2016
    

Formula

G.f.: (3661529 + 7523281*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>1.

A244351 Integers n such that for every integer k>0, n*6^k-1 has a divisor in the set { 7, 13, 31, 37, 97 }.

Original entry on oeis.org

84687, 429127, 508122, 1273238, 1570311, 1656045, 2574762, 2847748, 3048732, 3345805, 3849481, 5076399, 5324003, 5338292, 5908351, 6961919, 7639428, 8167823, 8508662, 8994775, 9078721, 9421866, 9936270, 9950261
Offset: 1

Views

Author

Pierre CAMI, Jun 26 2014

Keywords

Comments

For n > 24 a(n) = a(n-24) + 10124569, the first 24 values are in the data.
When the number a(n) has 1 or 6 as the last digit the number a(n)*6^k-1 is always divisible by 5 and have always a divisor in the set { 7, 13, 31, 37, 97 } for every k.

Crossrefs

Formula

For n>24 a(n) = a(n-24) + 10124569.

A244549 Integers m such that for every integer k>0, m*6^k+1 has a divisor in the set { 7, 13, 31, 37, 97 }.

Original entry on oeis.org

174308, 188299, 702703, 1045848, 1129794, 1615907, 1956746, 2485141, 3162650, 4216218, 4786277, 4800566, 5048170, 6275088, 6778764, 7075837, 7276821, 7549807, 8468524, 8554258, 8851331, 9616447, 9695442, 10039882
Offset: 1

Views

Author

Pierre CAMI, Jun 29 2014

Keywords

Comments

For n > 24 a(n) = a(n-24) + 10124569, the first 24 values are in the data.
When the number a(n) has 4 or 9 as the last digit the number a(n)*6^k-1 is always divisible by 5 and have always a divisor in the set { 7, 13, 31, 37, 97 } for every k.

Crossrefs

Formula

For n > 24 a(n) = a(n-24) + 10124569.

A345685 a(n) is the smallest cardinality of all covering sets associated with Riesel number A101036(n).

Original entry on oeis.org

6, 6, 7, 7, 6, 7, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6
Offset: 1

Views

Author

Felix Fröhlich, Jun 23 2021

Keywords

Comments

The condition for choosing a covering set is necessary as there are Riesel numbers with more than one covering set, see A263392.

Examples

			   n | Riesel number | Covering set               | a(n)
--------------------------------------------------------
   1 |  509203       | {3, 5, 7, 13, 17, 241}     | 6
   2 |  762701       | {3, 5, 7, 13, 17, 241}     | 6
   3 |  777149       | {3, 5, 7, 13, 19, 37, 73}  | 7
   4 |  790841       | {3, 5, 7, 13, 19, 37, 73}  | 7
   5 |  992077       | {3, 5, 7, 13, 17, 241}     | 6
   6 | 1106681       | {3, 5, 7, 13, 19, 37, 73}  | 7
   7 | 1247173       | {3, 5, 7, 13, 17, 241}     | 6
   8 | 1254341       | {3, 5, 7, 13, 17, 241}     | 6
   9 | 1330207       | {3, 5, 7, 13, 17, 241}     | 6
  10 | 1330319       | {3, 5, 7, 13, 17, 241}     | 6
  11 | 1715053       | {3, 5, 7, 13, 19, 37, 73}  | 7
  12 | 1730653       | {3, 5, 7, 13, 17, 241}     | 6
  13 | 1730681       | {3, 5, 7, 13, 17, 241}     | 6
  14 | 1744117       | {3, 5, 7, 13, 19, 73, 109} | 7
  15 | 1830187       | {3, 5, 7, 13, 37, 73, 109} | 7
  16 | 1976473       | {3, 5, 7, 13, 17, 241}     | 6
		

Crossrefs

Previous Showing 11-15 of 15 results.