cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A124206 Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 is prime.

Original entry on oeis.org

12, 140, 212, 315, 455, 512, 560, 660, 687, 807, 947, 1005, 1007, 1097, 1128, 1152, 1182, 1301, 1427, 1442, 1491, 1571, 1755, 1787, 1860, 2258, 2346, 2400, 2616, 2712, 2757, 2810, 3015, 3120, 3233, 3318, 3431, 3528, 3756, 3797, 3827, 3966, 4038, 4071
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Cf. A049407, similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..5000] | IsPrime(s) where s is 1+&+[n^i: i in [1..51 by 2]]]; // Vincenzo Librandi, Jun 28 2014
  • Mathematica
    Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51], Print[n]], {n, 1, 2400}]
    Select[Range[6000], PrimeQ[Total[#^Range[1, 51, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)

A124207 Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^53 + n^55 is prime.

Original entry on oeis.org

1, 186, 256, 325, 763, 853, 916, 1239, 1297, 1398, 1500, 1669, 1878, 1992, 2373, 2503, 2536, 2578, 2626, 2740, 2823, 2836, 2841, 2926, 2958, 3193, 3255, 3381, 3447, 3738, 3843, 3903, 4095, 4156, 4246, 4321, 4407, 4530, 4540, 4572, 4855, 5190, 5322, 5361, 5530
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Cf. A049407, similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..6000] | IsPrime(s) where s is 1+&+[n^i: i in [1..55 by 2]]]; // Vincenzo Librandi, Jun 28 2014
  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ a(n-1) while
            not isprime(1+(k^57-k)/(k^2-1)) do od; k
        end: a(1):=1:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 26 2014
  • Mathematica
    Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 + n^53 + n^55], Print[n]],{n, 1, 2400}]
    Select[Range[6000], PrimeQ[Total[#^Range[1, 55, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(sum(i=0,27,n^(2*i+1))+1),print1(n,", "))) \\ Derek Orr, Jun 24 2014
    

Extensions

a(42) and beyond from Derek Orr, Jun 24 2014

A124208 Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 + n^53 + n^55 + n^57 + n^59 is prime.

Original entry on oeis.org

1, 2, 34, 43, 64, 76, 80, 160, 194, 276, 416, 620, 625, 832, 996, 1022, 1251, 1341, 1345, 1356, 1435, 1461, 1475, 1672, 1694, 1700, 1733, 1769, 1777, 1782, 1796, 1808, 1997, 2144, 2239, 2245, 2260, 2270, 2273, 2411, 2573, 2659, 2679, 2829, 3396, 3497, 3516
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Cf. A049407, similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..5000] | IsPrime(s) where s is 1+&+[n^i: i in [1..59 by 2]]]; // Vincenzo Librandi, Jun 28 2014
  • Mathematica
    Do[If[PrimeQ[1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17 + n^19 + n^21 + n^23 + n^25 + n^27 + n^29 + n^31 + n^33 + n^35 + n^37 + n^39 + n^41 + n^43 + n^45 + n^47 + n^49 + n^51 + n^53 + n^55 + n^57 + n^59],Print[n]],{n,1,2400}]
    Select[Range[5000], PrimeQ[Total[#^Range[1, 59, 2]] + 1] &] (* Vincenzo Librandi, Jun 28 2014 *)

A244377 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^15 is prime.

Original entry on oeis.org

2, 3, 15, 26, 30, 42, 63, 77, 107, 114, 123, 131, 143, 149, 173, 177, 212, 288, 297, 308, 309, 348, 411, 474, 548, 551, 600, 659, 681, 701, 705, 711, 770, 780, 788, 833, 840, 894, 927, 1011, 1016, 1059, 1064, 1082, 1092, 1104, 1178, 1239, 1290, 1400, 1422
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(s) where s is 1+&+[n^i: i in [1..15 by 2]]];
    
  • Mathematica
    Select[Range[5000], PrimeQ[Total[#^Range[1, 15, 2]] + 1]&]
  • Sage
    i,n = var('i,n')
    [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,7))] # Bruno Berselli, Jun 27 2014

A244378 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^17 is prime.

Original entry on oeis.org

2, 12, 34, 50, 72, 104, 172, 180, 198, 202, 240, 252, 254, 272, 300, 338, 348, 374, 494, 498, 504, 578, 640, 648, 652, 702, 728, 804, 832, 848, 892, 950, 1002, 1040, 1060, 1070, 1134, 1158, 1184, 1364, 1378, 1464, 1564, 1598, 1608, 1624, 1630, 1678, 1688, 1704, 1734
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..2500] | IsPrime(s) where s is 1+&+[n^i: i in [1..17 by 2]]];
    
  • Mathematica
    Select[Range[7000], PrimeQ[Total[#^Range[1, 17, 2]] + 1] &]
  • PARI
    isok(n) = isprime(1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + n^13 + n^15 + n^17); \\ Michel Marcus, Jun 27 2014
    
  • Sage
    i,n = var('i,n')
    [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,8))] # Bruno Berselli, Jun 27 2014

A244379 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^21 is prime.

Original entry on oeis.org

2, 30, 56, 122, 216, 246, 248, 318, 552, 846, 948, 1100, 1128, 1148, 1200, 1296, 1308, 1416, 1716, 1812, 1818, 1920, 2040, 2166, 2196, 2210, 2582, 2592, 2672, 2696, 2828, 2862, 2886, 2970, 3150, 3192, 3378, 3396, 3492, 3522, 3626, 3782, 3998, 4040, 4070
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..4500] | IsPrime(s) where s is 1+&+[n^i: i in [1..21 by 2]]];
    
  • Mathematica
    Select[Range[5000], PrimeQ[Total[#^Range[1, 21, 2]] + 1]&]
  • Sage
    i,n = var('i,n')
    [n for n in (1..4100) if is_prime(1+(n^(2*i+1)).sum(i,0,10))] # Bruno Berselli, Jun 27 2014

A244380 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^25 is prime.

Original entry on oeis.org

48, 136, 172, 198, 222, 388, 718, 802, 844, 966, 1342, 1356, 1488, 1542, 1668, 1708, 1734, 1780, 1956, 2008, 2082, 2316, 2356, 2394, 2422, 2536, 2734, 2844, 2880, 2916, 2974, 2982, 3024, 3120, 3258, 3364, 3562, 3664, 3906, 3930, 4308, 4312, 4554, 4566
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..5500] | IsPrime(s) where s is 1+&+[n^i: i in [1..25 by 2]]];
  • Mathematica
    Select[Range[6000], PrimeQ[Total[#^Range[1, 25, 2]] + 1] &]

A244383 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^29 is prime.

Original entry on oeis.org

2, 10, 24, 50, 64, 70, 138, 204, 222, 238, 270, 278, 344, 362, 448, 498, 508, 574, 814, 964, 994, 1188, 1216, 1340, 1374, 1394, 1426, 1454, 1510, 1556, 1582, 1652, 1748, 1760, 1880, 2060, 2180, 2192, 2224, 2424, 2436, 2500, 2674, 2784, 2874, 3166, 3168, 3190
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..5500] | IsPrime(s) where s is 1+&+[n^i: i in [1..29 by 2]]];
  • Mathematica
    Select[Range[6000], PrimeQ[Total[#^Range[1, 29, 2]] + 1] &]

A244384 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^33 is prime.

Original entry on oeis.org

60, 74, 86, 150, 164, 438, 446, 504, 560, 620, 830, 870, 890, 908, 990, 1194, 1302, 1488, 1596, 1668, 1788, 2252, 2354, 2564, 2652, 2838, 3194, 3602, 3792, 3828, 3924, 3960, 4296, 4506, 4608, 4676, 4968, 5352, 5402, 5504, 5694, 5868, 5922, 6150, 6170, 6176
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..6500] | IsPrime(s) where s is 1+&+[n^i: i in [1..33 by 2]]];
  • Mathematica
    Select[Range[8000], PrimeQ[Total[#^Range[1, 33, 2]] + 1]&]

A244385 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + ... + k^37 is prime.

Original entry on oeis.org

10, 192, 244, 442, 474, 480, 654, 840, 862, 892, 904, 978, 1152, 1164, 1248, 1428, 1438, 1564, 1618, 1792, 1878, 2142, 2368, 2398, 2488, 2880, 3228, 3592, 3610, 3708, 3910, 3928, 4102, 4210, 4318, 4432, 4464, 5118, 5748, 5842, 6052, 6060, 6064, 6262, 6804
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244376.

Programs

  • Magma
    [n: n in [0..7000] | IsPrime(s) where s is 1+&+[n^i: i in [1..37 by 2]]];
  • Mathematica
    Select[Range[7000], PrimeQ[Total[#^Range[1, 37, 2]] + 1]&]
Previous Showing 11-20 of 26 results. Next