cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A234275 Expansion of (1+2*x+9*x^2-4*x^3)/(1-x)^2.

Original entry on oeis.org

1, 4, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2013

Keywords

Comments

Also the coordination sequence for a point of degree 4 in the tiling of the Euclidean plane by right triangles (with angles Pi/2, Pi/4, Pi/4). These triangles are fundamental regions for the Coxeter group (2,4,4). In the notation of Conway et al. 2008 this is the tiling *442. The coordination sequence for a point of degree 8 is given by A022144. - N. J. A. Sloane, Dec 28 2015
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood. Initialized with a single black (ON) cell at stage zero. - Robert Price, May 28 2016

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5. See p. 191.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

For partial sums see A265056.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 4}, LinearRecurrence[{2, -1}, {16, 24}, 60]] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    Vec(-(4*x^3-9*x^2-2*x-1)/(x-1)^2 + O(x^100)) \\ Colin Barker, Jul 10 2015

Formula

a(n) = A022144(n), n>1. - R. J. Mathar, Jan 11 2014
From Colin Barker, Jul 10 2015: (Start)
a(n) = 8*n, n>1.
a(n) = 2*a(n-1) - a(n-2) for n>3.
G.f.: -(4*x^3-9*x^2-2*x-1) / (x-1)^2.
(End)

A298016 Coordination sequence of snub-632 tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 12, 12, 24, 36, 24, 42, 60, 36, 60, 84, 48, 78, 108, 60, 96, 132, 72, 114, 156, 84, 132, 180, 96, 150, 204, 108, 168, 228, 120, 186, 252, 132, 204, 276, 144, 222, 300, 156, 240, 324, 168, 258, 348, 180, 276, 372, 192, 294, 396, 204, 312, 420, 216, 330, 444, 228, 348, 468, 240
Offset: 0

Views

Author

Chaim Goodman-Strauss and N. J. A. Sloane, Jan 11 2018

Keywords

Comments

The snub-632 tiling in also called the fsz-d net. It is the dual of the 3.3.3.3.6 Archimedean tiling.
This is also called the "6-fold pentille" tiling in Conway, Burgiel, Goodman-Strauss, 2008, p. 288. - Felix Fröhlich, Jan 13 2018

References

  • J. H. Conway, H. Burgiel and Chaim Goodman-Strauss, The Symmetries of Things, A K Peters, Ltd., 2008, ISBN 978-1-56881-220-5.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f:=proc(n) local k,r;
    if n=0 then return(1); fi;
    r:=(n mod 3); k:=(n-r)/3;
    if r=0 then 12*k elif r=1 then 18*k+6 else 24*k+12; fi;
    end;
    [seq(f(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {6, 12, 12, 24, 36, 24}, 60]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 6*x + 12*x^2 + 10*x^3 + 12*x^4 + 12*x^5 + x^6) / ((1 - x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Jan 13 2018

Formula

For n >= 1, let k=floor(n/3). Then a(3*k) = 12*k, a(3*k+1)=18*k+6, a(3*k+2)=24*k+12.
a(n) = 2*a(n-3) - a(n-6) for n >= 7.
G.f.: -(-x^6-12*x^5-12*x^4-10*x^3-12*x^2-6*x-1)/(x^6-2*x^3+1).

A298022 Coordination sequence for Dual(3^3.4^2) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 7, 12, 17, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65, 70, 75, 79, 84, 89, 93, 98, 103, 107, 112, 117, 121, 126, 131, 135, 140, 145, 149, 154, 159, 163, 168, 173, 177, 182, 187, 191, 196, 201, 205, 210, 215, 219, 224, 229, 233, 238, 243, 247, 252, 257, 261
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings.

References

  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96.

Crossrefs

See A298023 for partial sums, A298024 for a tetravalent point.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A049347.

Programs

  • PARI
    \\ See Links section.

Formula

Conjectures from Colin Barker, Jan 22 2018: (Start)
G.f.: (1 + 2*x + 4*x^2 + 4*x^3 + 3*x^4 + 2*x^5 - 2*x^8) / ((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>5. (End)
Conjecture: a(n) = 2*(21*n + 3*A049347(n+2)/2)/9 for n > 4. - Stefano Spezia, Nov 24 2024

Extensions

More terms from Rémy Sigrist, Jan 21 2018

A298028 Coordination sequence of Dual(3.6.3.6) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 12, 9, 24, 15, 36, 21, 48, 27, 60, 33, 72, 39, 84, 45, 96, 51, 108, 57, 120, 63, 132, 69, 144, 75, 156, 81, 168, 87, 180, 93, 192, 99, 204, 105, 216, 111, 228, 117, 240, 123, 252, 129, 264, 135, 276, 141, 288, 147, 300, 153, 312, 159, 324, 165, 336, 171, 348, 177, 360, 183, 372, 189, 384, 195
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A135556 (partial sums), A298026 (trivalent point).
If the initial 1 is changed to 0 we get A165988 (but we need both sequences, just as we have both A008574 and A008586).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f3:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 6*n else 3*n; fi; end;
    [seq(f3(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {3, 12, 9, 24}, 80]] (* Jean-François Alcover, Mar 23 2020 *)

Formula

a(0)=1; a(2*k) = 12*k, a(2*k+1) = 6*k+3.
G.f.: 1 + 3*x*(x^2+4*x+1)/(1-x^2)^2. - Robert Israel, Jan 21 2018
a(n) = 3*A022998(n), n>0. - R. J. Mathar, Jan 29 2018

A298029 Coordination sequence of Dual(3.4.6.4) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 6, 12, 18, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 363, 375, 381, 393, 399, 411, 417, 429, 435, 447, 453, 465, 471, 483, 489, 501, 507, 519, 525, 537, 543, 555
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the deltoidal trihexagonal tiling, or the mta net.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020
This is one of the Laves tilings.

Crossrefs

Cf. A007310, A008574, A298030 (partial sums), A298031 (for a tetravalent node), A298033 (hexavalent node), A306771.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 6, 12, 18}, LinearRecurrence[{1, 1, -1}, {33, 39, 51}, 60]] (* Jean-François Alcover, Jan 07 2019 *)
    Join[{1,3,6,12,18},Table[If[EvenQ[n],9n-15,9n-12],{n,5,70}]] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    Vec((1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 9*x^5 - 3*x^7) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018

Formula

Theorem: For n >= 5, if n is even then a(n) = 9*n-15, otherwise a(n) = 9*n-12. The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. - N. J. A. Sloane, Jan 24 2018
G.f.: -(3*x^7 - 9*x^5 - 3*x^4 - 4*x^3 - 2*x^2 - 2*x - 1)/((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7. - Colin Barker, Jan 25 2018
a(n) = (3/2)*(6*n - (-1)^n - 9) for n>4. - Bruno Berselli, Jan 25 2018
a(n) = 3*A007310(n-1), n>4. - R. J. Mathar, Jan 29 2018

A298031 Coordination sequence of Dual(3.4.6.4) tiling with respect to a tetravalent node.

Original entry on oeis.org

1, 4, 10, 16, 30, 36, 48, 54, 66, 72, 84, 90, 102, 108, 120, 126, 138, 144, 156, 162, 174, 180, 192, 198, 210, 216, 228, 234, 246, 252, 264, 270, 282, 288, 300, 306, 318, 324, 336, 342, 354, 360, 372, 378, 390, 396, 408, 414, 426, 432, 444, 450, 462, 468, 480, 486, 498, 504, 516, 522, 534, 540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018; extended with formula, Jan 24 2018

Keywords

Comments

Also known as the mta net.
This is one of the Laves tilings.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020

Crossrefs

Cf. A008574, A298032 (partial sums), A298029 (for a trivalent node), A298033 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f4:=proc(n) local L; L:=[1,4,10,16];
    if n<4 then L[n+1] elif (n mod 2) = 0 then 9*n-6 else 9*n-9; fi;
    end;
    [seq(f4(n),n=0..80)];
  • Mathematica
    Join[{1, 4, 10, 16}, LinearRecurrence[{1, 1, -1}, {30, 36, 48}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 3*x + 5*x^2 + 3*x^3 + 8*x^4 - 2*x^6) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018

Formula

Theorem: For n >= 4, a(n) = 9*n-6 if n is even, otherwise a(n) = 9*n-9.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: -(2*x^6 - 8*x^4 - 3*x^3 - 5*x^2 - 3*x - 1) / ((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4. - Colin Barker, Jan 25 2018
a(n) = 6*A007494(n-1), n>3. - R. J. Mathar, Jan 29 2018

A298033 Coordination sequence of the Dual(3.4.6.4) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 12, 24, 30, 42, 48, 60, 66, 78, 84, 96, 102, 114, 120, 132, 138, 150, 156, 168, 174, 186, 192, 204, 210, 222, 228, 240, 246, 258, 264, 276, 282, 294, 300, 312, 318, 330, 336, 348, 354, 366, 372, 384, 390, 402, 408, 420, 426, 438, 444, 456, 462, 474, 480, 492, 498, 510, 516, 528, 534, 546, 552
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018, corrected Jan 24 2018

Keywords

Comments

Also known as the mta net.
This is one of the Laves tilings.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A008574, A038764 (partial sums), A298029 (coordination sequence for a trivalent node), A298031 (coordination sequence for a tetravalent node).

Programs

  • Maple
    f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 9*n-6 else 9*n-3; fi; end;
    [seq(f6(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, -1}, {6, 12, 24}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018
    
  • PARI
    apply( {A298033(n)=if(n,n*3\/2*6-6,1)}, [0..66]) \\ M. F. Hasler, Jan 11 2022

Formula

Theorem: For n>0, a(n) = 9*n-6 if n is even, a(n) = 9*n-3 if n is odd.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: (1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)*(1 - x^2)).
First differences are 1, 5, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, ...
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. - Colin Barker, Jan 25 2018
a(n) = 6*floor((3n-1)/2) for n > 0. - M. F. Hasler, Jan 11 2022

A068600 Number of n-uniform tilings having n different arrangements of polygons about their vertices.

Original entry on oeis.org

11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Brian Galebach, Mar 28 2002

Keywords

Comments

Sequence gives the number of edge-to-edge regular-polygon tilings having n topologically distinct vertex types, with each vertex type having a different arrangement of surrounding polygons. Does not allow for tilings with two or more vertex types having the same arrangement of surrounding polygons, even when those vertices are topologically distinct. There are no 8- or higher-uniform tilings having the equivalent number of distinct polygon arrangements.
There are eleven 1-uniform tilings (also called the "Archimedean" tessellations) which comprise the three regular tessellations (all triangles, squares, or hexagons) plus the eight semiregular tessellations. (See A250120. - N. J. A. Sloane, Nov 29 2014)

References

  • This sequence was originally calculated by Otto Krotenheerdt.
  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
  • Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.

Crossrefs

Cf. A068599.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).

A250123 Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x+1)*(x^15 +3*x^14 -4*x^11 -6*x^10 -7*x^9 -4*x^8 -7*x^7 -11*x^6 -9*x^5 -7*x^4 -4*x^3 -4*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250124 Coordination sequence of point of type 3.3.12.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 7, 10, 15, 16, 21, 29, 28, 34, 33, 40, 48, 45, 53, 51, 59, 65, 64, 72, 68, 78, 83, 83, 89, 87, 97, 100, 102, 107, 106, 114, 119, 121, 124, 125, 132, 138, 138, 143, 144, 149, 157, 156, 162, 161, 168, 176, 173, 181, 179, 187, 193, 192, 200, 196, 206, 211, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(3*x^14 -4*x^12 -4*x^11 -7*x^10 -12*x^9 -14*x^8 -21*x^7 -17*x^6 -15*x^5 -15*x^4 -10*x^3 -7*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014
Previous Showing 21-30 of 33 results. Next