cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A336570 Number of maximal sets of proper divisors d|n, d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 36, 120, 144, 180 (ones not shown):
  {2,18}    {3,12,24}    {2,18,72}       {2,18}
  {3,12}    {5,20,40}    {3,9,18,72}     {3,12}
  {2,4,12}  {2,4,8,24}   {3,12,24,48}    {5,20}
  {3,9,18}  {2,4,8,40}   {3,12,24,72}    {5,45}
            {2,4,12,24}  {2,4,8,16,48}   {2,4,12}
            {2,4,20,40}  {2,4,8,24,48}   {2,4,20}
                         {2,4,8,24,72}   {3,9,18}
                         {2,4,12,24,48}  {3,9,45}
                         {2,4,12,24,72}
		

Crossrefs

A336569 is the version for chains containing n.
A336571 is the non-maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strses[n_]:=If[n==1,{{}},Join@@Table[Append[#,d]&/@strses[d],{d,Select[Most[Divisors[n]],strsigQ]}]];
    Table[Length[fasmax[strses[n]]],{n,100}]

A337074 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities), starting with n!.

Original entry on oeis.org

1, 1, 2, 0, 28, 0, 768, 0, 0, 0, 42155360, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 16 2020

Keywords

Comments

Support appears to be {0, 1, 2, 4, 6, 10}.

Examples

			The a(4) = 28 chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/8/2/1   24/12/4/2/1
      24/3   24/4/1   24/8/4/1
      24/4   24/4/2   24/8/4/2
      24/8   24/8/1   24/12/2/1
      24/12  24/8/2   24/12/3/1
             24/8/4   24/12/4/1
             24/12/1  24/12/4/2
             24/12/2
             24/12/3
             24/12/4
		

Crossrefs

A336867 is the complement of the support.
A336868 is the characteristic function (image under A057427).
A336942 is half the version for superprimorials (n > 1).
A337071 does not require distinct prime multiplicities.
A337104 is the case of chains ending with 1.
A000005 counts divisors.
A000142 lists factorial numbers.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336571 counts chains of divisors 1 < d < n using A130091.

Programs

  • Mathematica
    chnsc[n_]:=If[!UnsameQ@@Last/@FactorInteger[n],{},If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]]];
    Table[Length[chnsc[n!]],{n,0,6}]

Formula

a(n) = 2*A337104(n) = 2*A336423(n!) for n > 1.

A337107 Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors from n! to 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 9, 4, 0, 1, 14, 45, 52, 20, 0, 1, 28, 183, 496, 655, 420, 105, 0, 1, 58, 633, 2716, 5755, 6450, 3675, 840, 0, 1, 94, 1659, 11996, 46235, 106806, 155869, 145384, 84276, 27720, 3960
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2020

Keywords

Comments

Row n > 1 appears to be row n! of A334996.

Examples

			Triangle begins:
    1
    0    1
    0    1    2
    0    1    6    9    4
    0    1   14   45   52   20
    0    1   28  183  496  655  420  105
    0    1   58  633 2716 5755 6450 3675  840
Row n = 4 counts the following chains:
  24/1  24/2/1   24/4/2/1   24/8/4/2/1
        24/3/1   24/6/2/1   24/12/4/2/1
        24/4/1   24/6/3/1   24/12/6/2/1
        24/6/1   24/8/2/1   24/12/6/3/1
        24/8/1   24/8/4/1
        24/12/1  24/12/2/1
                 24/12/3/1
                 24/12/4/1
                 24/12/6/1
		

Crossrefs

A097805 is the restriction to powers of 2.
A325617 is the maximal case.
A337105 gives row sums.
A337106 is column k = 3.
A000005 counts divisors.
A000142 lists factorial numbers.
A001055 counts factorizations.
A074206 counts chains of divisors from n to 1.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A076716 counts factorizations of factorial numbers.
A253249 counts chains of divisors.
A337071 counts chains starting with n!.

Programs

  • Maple
    b:= proc(n) option remember; expand(x*(`if`(n=1, 1, 0) +
          add(b(d), d=numtheory[divisors](n) minus {n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n!)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Aug 23 2020
  • Mathematica
    nv=5;
    chnsc[n_]:=Select[Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],n]}],{n}],MemberQ[#,1]&];
    Table[Length[Select[chnsc[n!],Length[#]==k&]],{n,nv},{k,1+PrimeOmega[n!]}]

A343343 Numbers with either no prime index dividing, or no prime index divisible by all the other prime indices.

Original entry on oeis.org

1, 15, 30, 33, 35, 45, 51, 55, 60, 66, 69, 70, 75, 77, 85, 90, 91, 93, 95, 99, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 150, 153, 154, 155, 161, 165, 170, 175, 177, 180, 182, 186, 187, 190, 195, 198, 201, 203, 204, 205, 207, 209, 210
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

After 1, first differs from A318992 in lacking 390, with prime indices {1,2,3,6}.
First differs from A343337 in having 195, with prime indices {2,3,6}.
Alternative name: 1 and numbers where either the smallest prime index is not a divisor of all the other prime indices, or the greatest prime index is not divisible by all the other prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions that either empty, have smallest part not dividing all the others, or have greatest part not divisible by all the others (counted by A343346). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            90: {1,2,2,3}      141: {2,15}
     15: {2,3}         91: {4,6}          143: {5,6}
     30: {1,2,3}       93: {2,11}         145: {3,10}
     33: {2,5}         95: {3,8}          150: {1,2,3,3}
     35: {3,4}         99: {2,2,5}        153: {2,2,7}
     45: {2,2,3}      102: {1,2,7}        154: {1,4,5}
     51: {2,7}        105: {2,3,4}        155: {3,11}
     55: {3,5}        110: {1,3,5}        161: {4,9}
     60: {1,1,2,3}    119: {4,7}          165: {2,3,5}
     66: {1,2,5}      120: {1,1,1,2,3}    170: {1,3,7}
     69: {2,9}        123: {2,13}         175: {3,3,4}
     70: {1,3,4}      132: {1,1,2,5}      177: {2,17}
     75: {2,3,3}      135: {2,2,2,3}      180: {1,1,2,2,3}
     77: {4,5}        138: {1,2,9}        182: {1,4,6}
     85: {3,7}        140: {1,1,3,4}      186: {1,2,11}
For example, the prime indices of 90 are {1,2,2,3}, and, because 1 divides all the other parts, 90 is in the sequence, even though 3 is not divisible by all the other parts.
		

Crossrefs

The partitions without these Heinz numbers are counted by A130714.
The first condition alone gives A342193.
The second condition alone gives A343337.
The "and" instead of "or" version is A343338.
The partitions with these Heinz numbers are counted by A343346.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)||!And@@IntegerQ/@(p/Min@@p)]&]

Formula

Equals the union of A342193 and A343337.

A336942 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 5, 95, 8823, 4952323, 20285515801, 714092378624317
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2020

Keywords

Examples

			The a(0) = 1 through a(2) = 5 chains:
  {1}  {2,1}  {12,1}
              {12,2,1}
              {12,3,1}
              {12,4,1}
              {12,4,2,1}
		

Crossrefs

A076954 can be used instead of A006939 (cf. A307895, A325337).
A336423 and A336571 are not restricted to A006939.
A336941 is the version not restricted by A130091.
A337075 is the version for factorials.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[chern[n]],{n,0,3}]

Formula

a(n) = A336423(A006939(n)) = A336571(A006939(n)).

A343340 Numbers with a prime index dividing all the other prime indices, but with no prime index divisible by all the other prime indices.

Original entry on oeis.org

30, 60, 66, 70, 90, 102, 110, 120, 132, 138, 140, 150, 154, 170, 180, 182, 186, 190, 198, 204, 210, 220, 238, 240, 246, 264, 270, 273, 276, 280, 282, 286, 290, 300, 306, 308, 310, 322, 330, 340, 350, 354, 360, 364, 372, 374, 380, 396, 402, 406, 408, 410, 414
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Numbers > 1 whose smallest prime index divides all the other prime indices, but whose greatest prime index is not divisible by all the other prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part not divisible by all the others, but smallest part dividing all the others (counted by A343345). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     30: {1,2,3}        182: {1,4,6}          282: {1,2,15}
     60: {1,1,2,3}      186: {1,2,11}         286: {1,5,6}
     66: {1,2,5}        190: {1,3,8}          290: {1,3,10}
     70: {1,3,4}        198: {1,2,2,5}        300: {1,1,2,3,3}
     90: {1,2,2,3}      204: {1,1,2,7}        306: {1,2,2,7}
    102: {1,2,7}        210: {1,2,3,4}        308: {1,1,4,5}
    110: {1,3,5}        220: {1,1,3,5}        310: {1,3,11}
    120: {1,1,1,2,3}    238: {1,4,7}          322: {1,4,9}
    132: {1,1,2,5}      240: {1,1,1,1,2,3}    330: {1,2,3,5}
    138: {1,2,9}        246: {1,2,13}         340: {1,1,3,7}
    140: {1,1,3,4}      264: {1,1,1,2,5}      350: {1,3,3,4}
    150: {1,2,3,3}      270: {1,2,2,2,3}      354: {1,2,17}
    154: {1,4,5}        273: {2,4,6}          360: {1,1,1,2,2,3}
    170: {1,3,7}        276: {1,1,2,9}        364: {1,1,4,6}
    180: {1,1,2,2,3}    280: {1,1,1,3,4}      372: {1,1,2,11}
		

Crossrefs

The first condition alone gives the complement of A342193.
The second condition alone gives A343337.
The partitions with these Heinz numbers are counted by A343345.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.

Programs

  • Mathematica
    Select[Range[2,100],With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&And@@IntegerQ/@(p/Min@@p)]&]

Formula

Complement of A342193 in A343337.

A343662 Irregular triangle read by rows where T(n,k) is the number of strict length k chains of divisors of n, 0 <= k <= Omega(n) + 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 4, 6, 4, 1, 1, 3, 3, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 4, 5, 2, 1, 4, 5, 2, 1, 5, 10, 10, 5, 1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 4, 5, 2
Offset: 1

Views

Author

Gus Wiseman, May 01 2021

Keywords

Examples

			Triangle begins:
   1:  1  1
   2:  1  2  1
   3:  1  2  1
   4:  1  3  3  1
   5:  1  2  1
   6:  1  4  5  2
   7:  1  2  1
   8:  1  4  6  4  1
   9:  1  3  3  1
  10:  1  4  5  2
  11:  1  2  1
  12:  1  6 12 10  3
  13:  1  2  1
  14:  1  4  5  2
  15:  1  4  5  2
  16:  1  5 10 10  5  1
For example, row n = 12 counts the following chains:
  ()  (1)   (2/1)   (4/2/1)   (12/4/2/1)
      (2)   (3/1)   (6/2/1)   (12/6/2/1)
      (3)   (4/1)   (6/3/1)   (12/6/3/1)
      (4)   (4/2)   (12/2/1)
      (6)   (6/1)   (12/3/1)
      (12)  (6/2)   (12/4/1)
            (6/3)   (12/4/2)
            (12/1)  (12/6/1)
            (12/2)  (12/6/2)
            (12/3)  (12/6/3)
            (12/4)
            (12/6)
		

Crossrefs

Column k = 1 is A000005.
Row ends are A008480.
Row lengths are A073093.
Column k = 2 is A238952.
The case from n to 1 is A334996 or A251683 (row sums: A074206).
A non-strict version is A334997 (transpose: A077592).
The case starting with n is A337255 (row sums: A067824).
Row sums are A337256 (nonempty: A253249).
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A097805 counts compositions by sum and length.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A163767 counts length n - 1 chains of divisors of n.
A167865 counts strict chains of divisors > 1 summing to n.
A337070 counts strict chains of divisors starting with superprimorials.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@Subsets[Divisors[n],{k}],And@@Divisible@@@Partition[#,2,1]&]],{n,15},{k,0,PrimeOmega[n]+1}]

A342492 Number of compositions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 26, 37, 52, 73, 95, 125, 163, 208, 261, 330, 407, 498, 607, 734, 881, 1056, 1250, 1480, 1738, 2029, 2359, 2742, 3160, 3635, 4169, 4760, 5414, 6151, 6957, 7861, 8858, 9952, 11148, 12483, 13934, 15526, 17267, 19173, 21252, 23535, 25991
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

Also called log-concave-up compositions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (4,2,1,2,3) has first quotients (1/2,1/2,2,3/2) so is not counted under a(12), even though the first differences (-2,-1,1,1) are weakly increasing.
The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,2)    (4,1)        (4,2)
                       (2,1,1)    (1,1,3)      (5,1)
                       (1,1,1,1)  (2,1,2)      (1,1,4)
                                  (3,1,1)      (2,1,3)
                                  (1,1,1,2)    (2,2,2)
                                  (2,1,1,1)    (3,1,2)
                                  (1,1,1,1,1)  (4,1,1)
                                               (1,1,1,3)
                                               (2,1,1,2)
                                               (3,1,1,1)
                                               (1,1,1,1,2)
                                               (2,1,1,1,1)
                                               (1,1,1,1,1,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325546.
The strictly increasing version is A342493.
The unordered version is A342497, ranked by A342523.
The strict unordered version is A342516.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A002843 counts compositions with all adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>=l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q >= l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(47) from Alois P. Heinz, Mar 25 2021

A342493 Number of compositions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 16, 22, 28, 39, 49, 61, 77, 93, 114, 140, 169, 198, 233, 276, 321, 381, 439, 509, 591, 678, 774, 883, 1007, 1147, 1300, 1465, 1641, 1845, 2068, 2317, 2590, 2881, 3193, 3549, 3928, 4341, 4793, 5282, 5813, 6401, 7027, 7699, 8432, 9221, 10076
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (3,1,1,2) has first quotients (1/3,1,2) so is counted under a(7).
The a(1) = 1 through a(7) = 16 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)        (7)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)      (1,6)
              (2,1)  (2,2)    (2,3)    (2,4)      (2,5)
                     (3,1)    (3,2)    (3,3)      (3,4)
                     (1,1,2)  (4,1)    (4,2)      (4,3)
                     (2,1,1)  (1,1,3)  (5,1)      (5,2)
                              (2,1,2)  (1,1,4)    (6,1)
                              (3,1,1)  (2,1,3)    (1,1,5)
                                       (3,1,2)    (2,1,4)
                                       (4,1,1)    (2,2,3)
                                       (2,1,1,2)  (3,1,3)
                                                  (3,2,2)
                                                  (4,1,2)
                                                  (5,1,1)
                                                  (2,1,1,3)
                                                  (3,1,1,2)
		

Crossrefs

The version for differences instead of quotients is A325547.
The weakly increasing version is A342492.
The strictly decreasing version is A342494.
The unordered version is A342498, ranked by A342524.
The strict unordered version is A342517.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..55);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q > l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(51) from Alois P. Heinz, Mar 18 2021

A342520 Number of strict integer partitions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 10, 12, 13, 16, 20, 25, 30, 37, 42, 50, 57, 65, 80, 93, 108, 127, 147, 170, 198, 225, 258, 297, 340, 385, 448, 499, 566, 647, 737, 832, 937, 1064, 1186, 1348, 1522, 1701, 1916, 2157, 2402, 2697, 3013, 3355, 3742, 4190, 4656, 5191
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict integer partitions of n with distinct first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (12,10,5,2,1) has first quotients (5/6,1/2,2/5,1/2) so is not counted under a(30), even though the first differences (-2,-5,-3,-1) are distinct.
The a(1) = 1 through a(13) = 16 partitions (A..D = 10..13):
  1   2   3    4    5    6     7    8     9     A      B      C     D
          21   31   32   42    43   53    54    64     65     75    76
                    41   51    52   62    63    73     74     84    85
                         321   61   71    72    82     83     93    94
                                    431   81    91     92     A2    A3
                                    521   432   532    A1     B1    B2
                                          531   541    542    543   C1
                                          621   631    632    642   643
                                                721    641    651   652
                                                4321   731    732   742
                                                       821    741   751
                                                       5321   831   832
                                                              921   841
                                                                    A21
                                                                    5431
                                                                    7321
		

Crossrefs

The version for differences instead of quotients is A320347.
The non-strict version is A342514 (ranking: A342521).
The equal instead of distinct version is A342515.
The non-strict ordered version is A342529.
The version for strict divisor chains is A342530.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342086 counts strict chains of divisors with strictly increasing quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
Previous Showing 41-50 of 75 results. Next