cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 75 results. Next

A342523 Heinz numbers of integer partitions with weakly increasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Also called log-concave-up partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 60 are {1,1,2,3}, with first quotients (1,2,3/2), so 60 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   18: {1,2,2}
   30: {1,2,3}
   36: {1,1,2,2}
   50: {1,3,3}
   54: {1,2,2,2}
   60: {1,1,2,3}
   70: {1,3,4}
   72: {1,1,1,2,2}
   75: {2,3,3}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
		

Crossrefs

The version counting strict divisor chains is A057567.
For multiplicities (prime signature) instead of quotients we have A304678.
For differences instead of quotients we have A325360 (count: A240026).
These partitions are counted by A342523 (strict: A342516, ordered: A342492).
The strictly increasing version is A342524.
The weakly decreasing version is A342526.
A000041 counts partitions (strict: A000009).
A000929 counts partitions with adjacent parts x >= 2y.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342086 counts strict chains of divisors with strictly increasing quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],LessEqual@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342530 Number of strict chains of divisors ending with n and having distinct first quotients.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 6, 3, 6, 2, 12, 2, 6, 6, 9, 2, 12, 2, 12, 6, 6, 2, 28, 3, 6, 6, 12, 2, 26, 2, 14, 6, 6, 6, 31, 2, 6, 6, 28, 2, 26, 2, 12, 12, 6, 2, 52, 3, 12, 6, 12, 2, 28, 6, 28, 6, 6, 2, 66, 2, 6, 12, 25, 6, 26, 2, 12, 6, 26, 2, 76, 2, 6, 12, 12, 6, 26
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(12) = 12 chains (reversed):
  1  2    3    4    5    6      7    8      9    10      11    12
     2/1  3/1  4/1  5/1  6/1    7/1  8/1    9/1  10/1    11/1  12/1
               4/2       6/2         8/2    9/3  10/2          12/2
                         6/3         8/4         10/5          12/3
                         6/2/1       8/2/1       10/2/1        12/4
                         6/3/1       8/4/1       10/5/1        12/6
                                                               12/2/1
                                                               12/3/1
                                                               12/4/1
                                                               12/4/2
                                                               12/6/1
                                                               12/6/2
Not counted under a(12) are: 12/4/2/1, 12/6/2/1, 12/6/3, 12/6/3/1.
		

Crossrefs

The version for weakly increasing first quotients is A057567.
The version for equal first quotients is A169594.
The case of chains starting with 1 is A254578.
The version for strictly increasing first quotients is A342086.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A067824 counts strict chains of divisors ending with n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A334997 counts chains of divisors of n by length.
A342495/A342529 count compositions with equal/distinct quotients.
A342496/A342514 count partitions with equal/distinct quotients.
A342515/A342520 count strict partitions with equal/distinct quotients.
A342522/A342521 rank partitions with equal/distinct quotients.

Programs

  • Mathematica
    cmi[n_]:=Prepend[Prepend[#,n]&/@Join@@cmi/@Most[Divisors[n]],{n}];
    Table[Length[Select[cmi[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,100}]

Formula

a(n) = Sum_{d|n} A254578(d). - Ridouane Oudra, Jun 17 2025

A343339 Numbers with no prime index dividing all the other prime indices, but with a prime index divisible by all the other prime indices.

Original entry on oeis.org

195, 555, 585, 915, 957, 975, 1295, 1335, 1665, 1695, 1755, 2193, 2265, 2343, 2535, 2585, 2715, 2745, 2775, 2871, 2925, 3115, 3345, 3367, 3729, 3765, 3885, 4005, 4209, 4215, 4575, 4755, 4875, 4995, 5085, 5265, 5285, 5385, 5457, 5467, 5709, 5955, 6205, 6215
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Numbers > 1 whose smallest prime index does not divide all the other prime indices, but whose greatest prime index is divisible by all the other prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part divisible by all the others, but smallest part not dividing all the others (counted by A343344). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     195: {2,3,6}        2585: {3,5,15}       4575: {2,3,3,18}
     555: {2,3,12}       2715: {2,3,42}       4755: {2,3,66}
     585: {2,2,3,6}      2745: {2,2,3,18}     4875: {2,3,3,3,6}
     915: {2,3,18}       2775: {2,3,3,12}     4995: {2,2,2,3,12}
     957: {2,5,10}       2871: {2,2,5,10}     5085: {2,2,3,30}
     975: {2,3,3,6}      2925: {2,2,3,3,6}    5265: {2,2,2,2,3,6}
    1295: {3,4,12}       3115: {3,4,24}       5285: {3,4,36}
    1335: {2,3,24}       3345: {2,3,48}       5385: {2,3,72}
    1665: {2,2,3,12}     3367: {4,6,12}       5457: {2,7,28}
    1695: {2,3,30}       3729: {2,5,30}       5467: {4,5,20}
    1755: {2,2,2,3,6}    3765: {2,3,54}       5709: {2,5,40}
    2193: {2,7,14}       3885: {2,3,4,12}     5955: {2,3,78}
    2265: {2,3,36}       4005: {2,2,3,24}     6205: {3,7,21}
    2343: {2,5,20}       4209: {2,9,18}       6215: {3,5,30}
    2535: {2,3,6,6}      4215: {2,3,60}       6475: {3,3,4,12}
		

Crossrefs

The first condition alone gives A342193.
The second condition alone gives the complement of A343337.
The partitions with these Heinz numbers are counted by A343344.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[2,1000],With[{p=PrimePi/@First/@FactorInteger[#]},And@@IntegerQ/@(Max@@p/p)&&!And@@IntegerQ/@(p/Min@@p)]&]

Formula

Complement of A343337 in A342193.

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Views

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A323912 Dirichlet inverse of A083254(n), where A083254(n) = 2*phi(n) - n.

Original entry on oeis.org

1, 0, -1, 0, -3, 2, -5, 0, -2, 2, -9, 4, -11, 2, 5, 0, -15, 2, -17, 4, 7, 2, -21, 8, -6, 2, -4, 4, -27, -2, -29, 0, 11, 2, 17, 8, -35, 2, 13, 8, -39, -6, -41, 4, 8, 2, -45, 16, -10, -2, 17, 4, -51, 0, 29, 8, 19, 2, -57, 4, -59, 2, 12, 0, 35, -14, -65, 4, 23, -10, -69, 24, -71, 2, 4, 4, 47, -18, -77, 16, -8, 2, -81, -4, 47, 2, 29, 8, -87, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Sequences that appear in the convolution formulas: A002033, A023900, A046692, A055615, A067824, A074206, A101035, A130054, A174725, A191161, A253249, A323910 (Möbius transform), A328722, A330575.

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA083254(n) = (2*eulerphi(n)-n);
    v323912 = DirInverse(vector(up_to,n,A083254(n)));
    A323912(n) = v323912[n];
    
  • PARI
    A083254(n) = (2*eulerphi(n)-n);
    memoA323912 = Map();
    A323912(n) = if(1==n,1,my(v); if(mapisdefined(memoA323912,n,&v), v, v = -sumdiv(n,d,if(dA083254(n/d)*A323912(d),0)); mapput(memoA323912,n,v); (v))); \\ Antti Karttunen, Nov 22 2024

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083254(n/d) * a(d).
From Antti Karttunen, Nov 22 2024: (Start)
Following convolution formulas were conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly. The first one is certainly true, because A083254 is Möbius transform of A033879:
a(n) = Sum_{d|n} A323910(d).
a(n) = Sum_{d|n} A023900(d)*A074206(n/d) = Sum_{d|n} A002033(d-1)*A023900(n/d).
a(n) = Sum_{d|n} A055615(d)*A067824(n/d)
a(n) = Sum_{d|n} A046692(d)*A253249(n/d)
a(n) = Sum_{d|n} A130054(d)*A174725(n/d)
a(n) = Sum_{d|n} A101035(d)*A330575(n/d)
a(n) = Sum_{d|n} A191161(d)*A328722(n/d)
(End)

A342516 Number of strict integer partitions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 12, 14, 15, 17, 17, 21, 22, 26, 29, 31, 32, 35, 38, 42, 45, 48, 51, 58, 59, 63, 70, 76, 80, 88, 94, 98, 105, 113, 121, 129, 133, 143, 153, 159, 166, 183, 189, 195, 210, 221, 231, 248, 262, 273, 284, 298, 312
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also called log-concave-up strict partitions.
Also the number of reversed strict integer partitions of n with weakly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (6,3,2,1) has first quotients (1/2,2/3,1/2) so is not counted under a(12), even though the first differences (-3,-1,-1) are weakly increasing.
The a(1) = 1 through a(13) = 11 partitions (A..D = 10..13):
  1   2   3    4    5    6    7     8     9     A     B     C     D
          21   31   32   42   43    53    54    64    65    75    76
                    41   51   52    62    63    73    74    84    85
                              61    71    72    82    83    93    94
                              421   521   81    91    92    A2    A3
                                          621   532   A1    B1    B2
                                                721   632   732   C1
                                                      821   921   643
                                                                  832
                                                                  931
                                                                  A21
		

Crossrefs

The version for differences instead of quotients is A179255.
The non-strict ordered version is A342492.
The non-strict version is A342497 (ranking: A342523).
The strictly increasing version is A342517.
The weakly decreasing version is A342519.
A000041 counts partitions (strict: A000009).
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342517 Number of strict integer partitions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 8, 10, 11, 13, 14, 16, 16, 19, 21, 23, 27, 29, 31, 34, 36, 40, 43, 47, 49, 53, 56, 59, 66, 71, 75, 81, 86, 89, 97, 104, 110, 119, 123, 132, 143, 148, 156, 168, 177, 184, 198, 209, 218, 232, 246, 257, 269, 282, 294
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict partitions of n with strictly increasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (14,8,5,3,2) has first quotients (4/7,5/8,3/5,2/3) so is not counted under a(32), even though the differences (-6,-3,-2,-1) are strictly increasing.
The a(1) = 1 through a(13) = 10 partitions (A..D = 10..13):
  1   2   3    4    5    6    7    8     9     A     B     C     D
          21   31   32   42   43   53    54    64    65    75    76
                    41   51   52   62    63    73    74    84    85
                              61   71    72    82    83    93    94
                                   521   81    91    92    A2    A3
                                         621   532   A1    B1    B2
                                               721   632   732   C1
                                                     821   921   643
                                                                 832
                                                                 A21
		

Crossrefs

The version for differences instead of quotients is A179254.
The version for chains of divisors is A342086 (non-strict: A057567).
The non-strict ordered version is A342493.
The non-strict version is A342498 (ranking: A342524).
The weakly increasing version is A342516.
The strictly decreasing version is A342518.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A045690 counts sets with maximum n with all adjacent elements y < 2x.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict: A342097).
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342518 Number of strict integer partitions of n with strictly decreasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 13, 17, 18, 21, 24, 28, 30, 34, 37, 41, 47, 52, 56, 63, 68, 72, 83, 89, 99, 108, 117, 128, 139, 149, 163, 179, 189, 203, 217, 233, 250, 272, 289, 305, 329, 355, 381, 410, 438, 471, 505, 540, 571, 607, 645, 683, 726
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict integer partitions of n with strictly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (12,10,6,3,1) has first quotients (5/6,3/5,1/2,1/3) so is counted under a(32), even though the differences (-2,-4,-3,-2) are not strictly decreasing.
The a(1) = 1 through a(13) = 12 partitions (A..D = 10..13):
  1   2   3    4    5    6     7    8     9     A      B     C     D
          21   31   32   42    43   53    54    64     65    75    76
                    41   51    52   62    63    73     74    84    85
                         321   61   71    72    82     83    93    94
                                    431   81    91     92    A2    A3
                                          432   541    A1    B1    B2
                                          531   631    542   543   C1
                                                4321   641   642   652
                                                       731   651   742
                                                             741   751
                                                             831   841
                                                                   5431
		

Crossrefs

The version for differences instead of quotients is A320388.
The version for chains of divisors is A342086 (non-strict: A057567).
The non-strict ordered version is A342494.
The non-strict version is A342499 (ranking: A342525).
The strictly increasing version is A342517.
The weakly decreasing version is A342519.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A045690 counts sets with maximum n with all adjacent elements y < 2x.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict: A342097).
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342519 Number of strict integer partitions of n with weakly decreasing first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 12, 14, 15, 18, 18, 21, 25, 29, 32, 38, 40, 44, 51, 57, 61, 66, 73, 77, 89, 97, 104, 115, 124, 135, 147, 160, 174, 193, 206, 218, 238, 254, 272, 293, 313, 331, 353, 381, 408, 436, 468, 499, 532, 569, 610, 651, 694, 735, 783
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also called log-concave-down strict partitions.
Also the number of reversed strict partitions of n with weakly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (10,7,4,2,1) has first quotients (7/10,4/7,1/2,1/2) so is counted under a(24), even though the first differences (-3,-3,-2,-1) are weakly increasing.
The a(1) = 1 through a(13) = 14 strict partitions (A..D = 10..13):
  1   2   3    4    5    6     7     8     9     A      B     C      D
          21   31   32   42    43    53    54    64     65    75     76
                    41   51    52    62    63    73     74    84     85
                         321   61    71    72    82     83    93     94
                               421   431   81    91     92    A2     A3
                                           432   541    A1    B1     B2
                                           531   631    542   543    C1
                                                 4321   641   642    652
                                                        731   651    742
                                                              741    751
                                                              831    841
                                                              5421   931
                                                                     5431
                                                                     6421
		

Crossrefs

The non-strict ordered version is A069916.
The version for differences instead of quotients is A320382.
The non-strict version is A342513 (ranking: A342526).
The weakly increasing version is A342516.
The strictly decreasing version is A342518.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A057567 counts strict chains of divisors with weakly increasing quotients.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).
A342528 counts compositions with alternately weakly increasing parts.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]

A342521 Heinz numbers of integer partitions with distinct first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 1365 are {2,3,4,6}, with first quotients (3/2,4/3,3/2), so 1365 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  100: {1,1,3,3}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A130091.
For differences instead of quotients we have A325368 (count: A325325).
These partitions are counted by A342514 (strict: A342520, ordered: A342529).
The equal instead of distinct version is A342522.
The version counting strict divisor chains is A342530.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],UnsameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Previous Showing 51-60 of 75 results. Next