cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A336322 a(n) = A225546(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A225546 and A122111 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A225546 maps the k-th prime to 2^2^(k-1), whereas A122111 maps it to 2^k.
In composing these permutations, this sequence maps the list of prime numbers to the squarefree numbers, as listed in A019565; and the "normal" numbers (A055932), as listed in A057335, to ascending powers of 2.

Crossrefs

A225546 composed with A122111.
Sorted even bisection: A335738.
Sorted odd bisection (excluding 1): A335740.
Sequences used to express relationship between terms of this sequence: A001222, A003961, A253560, A331590, A350066.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (A033844, A000040, A019565), (A057335, A000079, A001146), (A000244, A011764), (A001248, A334110), (A253563, A334866).
The inverse permutation, A336321, lists sequences where the property is weaker (between the sets of terms).

Formula

a(A033844(m)) = A000040(m+1). [Offset corrected Peter Munn, Feb 14 2022]
a(A000040(m)) = A019565(m).
a(A057335(m)) = 2^m.
For m >= 1, a(2^m) = A001146(m-1).
a(A253563(m)) = A334866(m).
From Peter Munn, Feb 14 2022: (Start)
a(A253560(n)) = a(n)^2.
For n >= 2, a(A003961(n)) = A331590(a(n), 2^2^(A001222(n)-1)).
a(A350066(n, k)) = A331590(a(n), a(k)).
(End)

A369028 Exponential of Mangoldt function permuted by A253563.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 3, 5, 2, 1, 1, 1, 3, 1, 5, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 7, 11, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 11, 13, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A253563 (when viewed as an offset-1 sequence), because A253563 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A253563(n)).
a(1) = 0, and for n > 0, a(n) = lcm {1..A253563(n)} / lcm {1..A253563(n-1)}. [See comments]

A369029 Exponential of Mangoldt function permuted by A253565.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 1, 2, 7, 5, 1, 3, 1, 1, 1, 2, 11, 7, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 13, 11, 1, 7, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 17, 13, 1, 11, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A253565 (when viewed as an offset-1 sequence), because A253565 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A253565(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A253565(n)} / lcm {1..A253565(n-1)}. [LCM-transform, see comments]

A129598 a(n) = n * A111089(n).

Original entry on oeis.org

2, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605
Offset: 1

Views

Author

Antti Karttunen, May 01 2007

Keywords

Comments

Conjecture: differs from A050399 at the positions given by A089966. E.g., a(15)=75, instead of A050399(15)=225, a(30)=150, instead of A050399(30)=450, a(33)=363, instead of A050399(33)=1089, a(45)=225, instead of A050399(45)=1225. Conjecture 2: for all n > 1, a(n) divides A050399(n).

Crossrefs

Row 2 of A129595.
Essentially the same as A253560, except that here we have a(1) = 2.

Programs

Formula

a(1) = 2; for n >= 2, a(n) = A253560(n).

A277332 a(n) = A253565(A003714(n)).

Original entry on oeis.org

1, 2, 3, 5, 9, 7, 25, 15, 11, 49, 35, 21, 75, 13, 121, 77, 55, 245, 33, 147, 105, 17, 169, 143, 91, 847, 65, 605, 385, 39, 363, 231, 165, 735, 19, 289, 221, 187, 1859, 119, 1183, 1001, 85, 845, 715, 455, 4235, 51, 507, 429, 273, 2541, 195, 1815, 1155, 23, 361, 323, 247, 3757, 209, 3179, 2431, 133, 2023, 1547, 1309, 13013, 95
Offset: 0

Views

Author

Antti Karttunen, Oct 12 2016

Keywords

Comments

After the initial terms 1, 2 and 3, all other terms can be inductively generated by applying any finite composition-combination of A253560 and A253550 to 3, but with such a restriction that A253560 may not be applied twice in succession.
A permutation of A277334.
Note how A253565(A022340(n)) = A253565(2*A003714(n)) yields a permutation of A056911, odd squarefree numbers.

Examples

			55 = A253550(A253550(A253560(A253550(3)))), 55 is in this sequence.
		

Crossrefs

Cf. A277334 (same sequence sorted into ascending order).
Cf. also A056911, A277006, A277331.

Programs

Formula

a(n) = A253565(A003714(n)).

A286533 Restricted growth sequence of A278533 (prime-signature of A253563).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 3, 2, 6, 7, 7, 5, 4, 5, 3, 2, 8, 9, 10, 7, 9, 11, 7, 5, 6, 7, 7, 5, 4, 5, 3, 2, 12, 13, 14, 9, 14, 15, 10, 7, 13, 15, 15, 11, 9, 11, 7, 5, 8, 9, 10, 7, 9, 11, 7, 5, 6, 7, 7, 5, 4, 5, 3, 2, 16, 17, 18, 13, 19, 20, 14, 9, 18, 21, 21, 15, 14, 15, 10, 7, 17, 20, 21, 15, 20, 22, 15, 11, 13, 15, 15, 11, 9, 11, 7, 5, 12, 13, 14, 9, 14, 15, 10, 7
Offset: 0

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
    A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n)));
    A253560(n) = if(1==n, 1, (n*prime(A061395(n))));
    A253563(n) = if(n<2,(1+n),if(!(n%2),A253560(A253563(n/2)),A253550(A253563((n-1)/2)))); \\ Would be better if memoized!
    A278533(n) = A046523(A253563(n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278533(n-1))),"b286533.txt");

A286535 Restricted growth sequence of A278535 (prime-signature of A253565).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 5, 2, 3, 4, 5, 4, 6, 6, 7, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 4, 6, 8, 9, 8, 12, 12, 13, 6, 10, 12, 14, 9, 14, 13, 15, 2, 3, 4, 5, 4, 6, 6, 7, 4, 6, 8, 9, 6, 10, 9, 11, 4, 6, 8, 9, 8, 12, 12, 13, 6, 10, 12, 14, 9, 14, 13, 15, 4, 6, 8, 9, 8, 12, 12, 13, 8, 12, 16, 17, 12, 18
Offset: 0

Views

Author

Antti Karttunen, May 17 2017

Keywords

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
    A253550(n) = if(1==n, 1, (n/prime(A061395(n)))*prime(1+A061395(n)));
    A253560(n) = if(1==n, 1, (n*prime(A061395(n))));
    A253565(n) = if(n<2,(1+n),if(!(n%2),A253550(A253565(n/2)),A253560(A253565((n-1)/2)))); \\ Would be better if memoized!
    A278535(n) = A046523(A253565(n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278535(n-1))),"b286535.txt");

A387405 a(n) is the least k that is a multiple of d=A240991(n), with abundancy ratio sigma(k)/k equal to (sigma(d)+1)/d), or -1 if no such k exists.

Original entry on oeis.org

18, 54, 196, 1521, 486, 1372, 15376, 24025, 4374, 1032256, 67228, 39366, 476656, 257049, 744775, 27237961, 354294, 3341637, 3294172, 23088025, 870899121, 131096512, 3188646, 4990433449, 18837288001, 28697814, 43647148561, 458066416, 161414428, 131785698529, 8362054027, 274810802176, 564736653, 508339054441, 258280326
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2025

Keywords

Crossrefs

Programs

  • PARI
    A387405(n) = { my(d=A240991(n), r=(sigma(d)+1)/d); forstep(k=d,oo,d,if(sigma(k)/k==r, return(k))); }

Formula

a(n) = A253560(A240991(n)) = A006530(A240991(n)) * A240991(n). - Conjectured, most likely true, especially if A240991 is a subsequence of A387406.

A277331 a(n) = A253563(A003714(n)).

Original entry on oeis.org

1, 2, 4, 8, 6, 16, 12, 18, 32, 24, 36, 54, 30, 64, 48, 72, 108, 60, 162, 90, 150, 128, 96, 144, 216, 120, 324, 180, 300, 486, 270, 450, 750, 210, 256, 192, 288, 432, 240, 648, 360, 600, 972, 540, 900, 1500, 420, 1458, 810, 1350, 2250, 630, 3750, 1050, 1470, 512, 384, 576, 864, 480, 1296, 720, 1200, 1944, 1080, 1800, 3000, 840
Offset: 0

Views

Author

Antti Karttunen, Oct 12 2016

Keywords

Comments

After the initial terms 1, 2 and 4, all other terms can be inductively generated by applying any finite composition-combination of A253560 and A253550 to 4, but with such a restriction that A253550 may not be applied twice in succession.
A permutation of A055932.

Crossrefs

Cf. A003714, A055932 (same sequence sorted into ascending order), A253550, A253560, A253563, A122111.
Cf. also A277006, A277332.

Programs

Formula

a(n) = A253563(A003714(n)).
a(n) = A122111(A277006(n)).

A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 14, 21, 12, 25, 11, 22, 33, 20, 35, 18, 13, 26, 39, 28, 55, 30, 49, 17, 34, 51, 44, 65, 42, 77, 16, 19, 38, 57, 52, 85, 66, 91, 24, 27, 23, 46, 69, 68, 95, 78, 119, 40, 45, 50, 29, 58, 87, 76, 115, 102, 133, 56, 63, 70, 121, 31, 62, 93, 92, 145, 114, 161, 88, 99, 110, 143, 36
Offset: 1

Views

Author

Werner Schulte, Jan 05 2024

Keywords

Comments

Conjecture: this is a permutation of the natural numbers.
Generalized conjecture: Let T(n, k) = b(k) * prime(n - k + A061395(b(k))) for 1 < k <= n, and T(n, 1) = A008578(n), where b(n), n > 0, is a permutation of the natural numbers with b(1) = 1, then T(n, k), read by rows, is a permutation of the natural numbers.

Examples

			Triangle begins:
n\k :   1    2    3    4    5    6    7    8    9   10   11   12   13
=====================================================================
 1  :   1
 2  :   2    4
 3  :   3    6    9
 4  :   5   10   15    8
 5  :   7   14   21   12   25
 6  :  11   22   33   20   35   18
 7  :  13   26   39   28   55   30   49
 8  :  17   34   51   44   65   42   77   16
 9  :  19   38   57   52   85   66   91   24   27
10  :  23   46   69   68   95   78  119   40   45   50
11  :  29   58   87   76  115  102  133   56   63   70  121
12  :  31   62   93   92  145  114  161   88   99  110  143   36
13  :  37   74  111  116  155  138  203  104  117  130  187   60  169
etc.
		

Crossrefs

Programs

  • PARI
    T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2);
                while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
    
  • SageMath
    def prime(n): return sloane.A000040(n)
    def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0
    def T(n, k):
         if k == 1: return prime(n - 1) if n > 1 else 1
         return k * prime(n - k + A061395(k))
    for n in range(1, 11): print([T(n,k) for k in range(1, n+1)])
    # Peter Luschny, Jan 07 2024

Formula

T(n, n) = A253560(n) for n > 0.
T(n, 1) = A008578(n) for n > 0.
T(n, 2) = A001747(n) for n > 1.
T(n, 3) = A112773(n) for n > 2.
T(n, 4) = A001749(n-3) for n > 3.
T(n, 5) = A001750(n-2) for n > 4.
T(n, 6) = A138636(n-4) for n > 5.
T(n, 7) = A272470(n-3) for n > 6.
Previous Showing 11-20 of 20 results.