cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A381996 Number of non-isomorphic multisets of size n that can be partitioned into a set of sets.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 34, 47
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2025

Keywords

Comments

First differs from A382523 at a(12) = 47, A382523(12) = 45.
We call a multiset non-isomorphic iff it covers an initial interval of positive integers with weakly decreasing multiplicities. The size of a multiset is the number of elements, counting multiplicity.

Examples

			Differs from A382523 in counting the following under a(12):
  {1,1,1,1,1,1,2,2,3,3,4,5} with partition {{1},{1,2},{1,3},{1,4},{1,5},{1,2,3}}
  {1,1,1,1,2,2,2,2,3,3,3,3} with partition {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Factorizations of this type are counted by A050326, distinct sums A381633.
Normal multiset partitions of this type are counted by A116539, distinct sums A381718.
The complement is counted by A292444.
Twice-partitions of this type are counted by A358914, distinct sums A279785.
For integer partitions we have A382077, ranks A382200, complement A382078, ranks A293243.
Weak version is A382214, complement A292432, distinct sums A382216, complement A382202.
For distinct sums we have A382523, complement A382430.
Normal multiset partitions: A034691, A035310, A116540, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort /@ (#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[strnorm[n], Select[mps[#], UnsameQ@@#&&And@@UnsameQ@@@#&]!={}&]], {n,0,5}]

A382204 Number of normal multiset partitions of weight n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 8, 8, 10, 8, 15, 9, 14, 15, 17, 13, 22, 14, 25, 21, 23, 19, 34, 24, 29, 28, 37, 27, 45, 29, 44, 38, 43, 43, 59, 40, 51, 48, 69, 48, 71, 52, 73, 69, 72, 61, 93, 72, 91, 77, 99, 78, 105, 95, 119, 95, 113, 96, 146, 107, 126, 123, 151, 130
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 7 multiset partitions:
  {1} {11}   {111}     {1111}       {11111}         {111111}
      {1}{1} {2}{11}   {11}{11}     {2}{11}{11}     {111}{111}
             {1}{1}{1} {2}{2}{11}   {2}{2}{2}{11}   {22}{1111}
                       {1}{1}{1}{1} {1}{1}{1}{1}{1} {11}{11}{11}
                                                    {2}{2}{11}{11}
                                                    {2}{2}{2}{2}{11}
                                                    {1}{1}{1}{1}{1}{1}
The a(1) = 1 through a(7) = 5 factorizations:
  2  4    8      16       32         64           128
     2*2  3*4    4*4      3*4*4      8*8          3*4*4*4
          2*2*2  3*3*4    3*3*3*4    9*16         3*3*3*4*4
                 2*2*2*2  2*2*2*2*2  4*4*4        3*3*3*3*3*4
                                     3*3*4*4      2*2*2*2*2*2*2
                                     3*3*3*3*4
                                     2*2*2*2*2*2
		

Crossrefs

Without a common sum we have A055887.
Twice-partitions of this type are counted by A279789.
Without constant blocks we have A326518.
For distinct block-sums and strict blocks we have A381718.
Factorizations of this type are counted by A381995.
For distinct instead of equal block-sums we have A382203.
For strict instead of constant blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A255906 counts normal multiset partitions, row sums of A317532.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A304969, A356945.
Set multipartitions: A116540, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    h(s,x)=my(t=0,p=1,k=1);while(s%k==0,p*=1/(1-x^(s/k))-1;t+=p;k+=1);t
    lista(n)=Vec(1+sum(s=1,n,h(s,x+O(x*x^n)))) \\ Christian Sievers, Apr 05 2025

Formula

G.f.: 1 + Sum_{s>=1} Sum_{k=1..A055874(s)} Product_{v=1..k} (1/(1-x^(s/v)) - 1). - Christian Sievers, Apr 05 2025

Extensions

Terms a(16) and beyond from Christian Sievers, Apr 04 2025

A382429 Number of normal multiset partitions of weight n into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 13 partitions:
  {1} {12}   {123}     {1234}       {12345}         {123456}
      {1}{1} {3}{12}   {12}{12}     {24}{123}       {123}{123}
             {1}{1}{1} {14}{23}     {34}{124}       {125}{134}
                       {3}{3}{12}   {3}{12}{12}     {135}{234}
                       {1}{1}{1}{1} {5}{14}{23}     {145}{235}
                                    {3}{3}{3}{12}   {12}{12}{12}
                                    {1}{1}{1}{1}{1} {14}{14}{23}
                                                    {14}{23}{23}
                                                    {16}{25}{34}
                                                    {3}{3}{12}{12}
                                                    {5}{5}{14}{23}
                                                    {3}{3}{3}{3}{12}
                                                    {1}{1}{1}{1}{1}{1}
The corresponding factorizations:
  2  6    30     210      2310       30030
     2*2  5*6    6*6      21*30      30*30
          2*2*2  14*15    35*42      6*6*6
                 5*5*6    5*6*6      66*70
                 2*2*2*2  5*5*5*6    110*105
                          11*14*15   154*165
                          2*2*2*2*2  5*5*6*6
                                     14*14*15
                                     14*15*15
                                     26*33*35
                                     5*5*5*5*6
                                     11*11*14*15
                                     2*2*2*2*2*2
		

Crossrefs

Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
Without strict blocks we have A326518, non-strict blocks A326517.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A255906, A304969, A317532.
Set multipartitions: A089259, A116539, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025

A326914 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, min(j:A001787(j)>=n)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 2, 2, 5, 1, 12, 15, 18, 64, 52, 20, 166, 340, 203, 18, 332, 1315, 1866, 877, 15, 566, 3895, 9930, 10710, 4140, 11, 864, 9770, 39960, 74438, 64520, 21147, 6, 1214, 21848, 134871, 386589, 564508, 408096, 115975, 3, 1596, 44880, 402756, 1668338, 3652712
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.

Examples

			T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c.
Triangle T(n,k) begins:
  1;
     1;
        2;
        2,  5;
        1, 12,   15;
           18,   64,    52;
           20,  166,   340,    203;
           18,  332,  1315,   1866,    877;
           15,  566,  3895,   9930,  10710,   4140;
           11,  864,  9770,  39960,  74438,  64520,  21147;
            6, 1214, 21848, 134871, 386589, 564508, 408096, 115975;
  ...
		

Crossrefs

Main diagonal gives A000110.
Row sums give A116539.
Column sums give A003465.
Cf. A001787, A255903, A326962 (this triangle read by columns), A327115, A327116, A327117.

Programs

  • Maple
    C:= binomial:
    g:= proc(n) option remember; n*2^(n-1) end:
    h:= proc(n) option remember; local k; for k from
          `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
    seq(seq(T(n, k), k=h(n)..n), n=0..12);
  • Mathematica
    c = Binomial;
    g[n_] := g[n] = n*2^(n - 1);
    h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}];
    Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327115(n).
T(n*2^(n-1),n) = T(A001787(n),n) = 1.
T(n*2^(n-1)-1,n) = n for n >= 2.

A326962 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that all parts have different color patterns and a pattern for part i has i distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=k*2^(k-1), read by columns.

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 12, 18, 20, 18, 15, 11, 6, 3, 1, 15, 64, 166, 332, 566, 864, 1214, 1596, 1975, 2320, 2600, 2780, 2842, 2780, 2600, 2320, 1979, 1608, 1238, 908, 626, 404, 246, 136, 69, 32, 12, 4, 1, 52, 340, 1315, 3895, 9770, 21848, 44880, 86275, 157140
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.

Examples

			T(4,3) = 12: 3abc1a, 3abc1b, 3abc1c, 2ab2ac, 2ab2bc, 2ac2bc, 2ab1a1c, 2ab1b1c, 2ac1a1b, 2ac1b1c, 2bc1a1b, 2bc1a1c.
Triangle T(n,k) begins:
  1;
     1;
        2;
        2,  5;
        1, 12,   15;
           18,   64,    52;
           20,  166,   340,    203;
           18,  332,  1315,   1866,    877;
           15,  566,  3895,   9930,  10710,   4140;
           11,  864,  9770,  39960,  74438,  64520,  21147;
            6, 1214, 21848, 134871, 386589, 564508, 408096, 115975;
  ...
		

Crossrefs

Main diagonal gives A000110.
Row sums give A116539.
Column sums give A003465.
Cf. A001787, A255903, A326914 (this triangle read by rows), A327115, A327116, A327117.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i), j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
    seq(seq(T(n, k), n=k..k*2^(k-1)), k=0..5);
  • Mathematica
    c = Binomial;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k, i], j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {i, 0, k}];
    Table[Table[T[n, k], {n, k, k 2^(k-1)}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327115(n).
T(n*2^(n-1),n) = T(A001787(n),n) = 1.
T(n*2^(n-1)-1,n) = n for n >= 2.

A327117 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that a color pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 7, 18, 15, 0, 1, 10, 45, 84, 52, 0, 1, 14, 94, 298, 415, 203, 0, 1, 18, 174, 844, 1995, 2178, 877, 0, 1, 23, 300, 2081, 7440, 13638, 12131, 4140, 0, 1, 28, 486, 4652, 23670, 64898, 95823, 71536, 21147, 0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975
Offset: 0

Views

Author

Alois P. Heinz, Sep 13 2019

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order k*2^(k-1) = A001787(k).

Examples

			T(3,2) = 4: 2ab1a, 2ab1b, 1a1a1b, 1a1b1b.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  2;
  0, 1,  4,   5;
  0, 1,  7,  18,   15;
  0, 1, 10,  45,   84,    52;
  0, 1, 14,  94,  298,   415,    203;
  0, 1, 18, 174,  844,  1995,   2178,    877;
  0, 1, 23, 300, 2081,  7440,  13638,  12131,   4140;
  0, 1, 28, 486, 4652, 23670,  64898,  95823,  71536,  21147;
  0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975;
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A057427, A014616(n-1) for n>1, A327842.
Main diagonal gives A000110.
Row sums give A116540.
T(2n,n) gives A327843.

Programs

  • Maple
    C:= binomial:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i)+j-1, j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] Binomial[Binomial[k, i] + j - 1, j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A327118(n).

A382203 Number of normal multiset partitions of weight n into constant multisets with distinct sums.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 37, 76, 159, 326, 671, 1376, 2815, 5759, 11774, 24083, 49249, 100632, 205490, 419420, 855799, 1745889, 3561867, 7268240, 14836127, 30295633, 61888616
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(4) = 9 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1},{2}}  {{1},{1,1}}    {{1},{1,1,1}}
                    {{1},{2,2}}    {{1,1},{2,2}}
                    {{1},{2},{3}}  {{1},{2,2,2}}
                                   {{2},{1,1,1}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{3},{2,2}}
                                   {{1},{2},{3},{4}}
The a(5) = 19 factorizations:
  32  2*16  2*3*27   2*3*5*25  2*3*5*7*11
      4*8   2*4*9    2*3*5*9
      2*81  2*3*8    2*3*5*49
      4*27  2*3*125  2*3*7*25
      9*8   2*9*25
      3*16  2*5*27
            5*4*9
		

Crossrefs

Without distinct sums we have A055887.
Twice-partitions of this type are counted by A279786.
For distinct blocks instead of sums we have A304969.
Without constant blocks we have A326519.
Factorizations of this type are counted by A381635.
For strict instead of constant blocks we have A381718.
For equal instead of distinct block-sums we have A382204.
For equal block-sums and strict blocks we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A089259 counts set multipartitions of integer partitions.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A116540, A255906, A317532.
Set multipartitions with distinct sums: A279785, A381806, A381870.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@SameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(14)-a(26) from Christian Sievers, Apr 04 2025

A382428 Number of normal multiset partitions of weight n into sets with distinct sizes.

Original entry on oeis.org

1, 1, 1, 6, 8, 35, 292, 673, 2818, 16956, 219772, 636748, 3768505, 20309534, 183403268, 3227600747, 12272598308, 81353466578, 561187259734, 4416808925866, 50303004612136, 1238783066956740, 5566249468690291, 44970939483601100, 330144217684933896, 3131452652308459402
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(4) = 8 multiset partitions:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}
                  {{1},{1,2}}  {{1},{1,2,3}}
                  {{1},{2,3}}  {{1},{2,3,4}}
                  {{2},{1,2}}  {{2},{1,2,3}}
                  {{2},{1,3}}  {{2},{1,3,4}}
                  {{3},{1,2}}  {{3},{1,2,3}}
                               {{3},{1,2,4}}
                               {{4},{1,2,3}}
		

Crossrefs

For distinct sums instead of sizes we have A116539, see A050326.
Without distinct lengths we have A116540 (normal set multipartitions).
Without strict blocks we have A326517, for sum instead of size A326519.
For equal instead of distinct sizes we have A331638.
Twice-partitions of this type are counted by A358830.
For distinct sums instead of sizes we have A381718.
For equal instead of distinct sizes we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Length/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    R(n, k)={Vec(prod(j=1, n, 1 + binomial(k, j)*x^j + O(x*x^n)))}
    seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Mar 31 2025

Extensions

a(10) onwards from Andrew Howroyd, Mar 31 2025

A382202 Number of normal multisets of size n that cannot be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 9, 16, 27, 48, 78, 133
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

First differs from A292432 at a(9) = 48, A292432(9) = 46.
We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset m = {1,1,1,2,2} has 3 partitions into a set of sets:
  {{1},{1,2},{1,2}}
  {{1},{1},{2},{1,2}}
  {{1},{1},{1},{2},{2}}
but none of these has distinct block-sums, so m is counted under a(5).
The a(2) = 1 through a(6) = 9 normal multisets:
  {1,1}  {1,1,1}  {1,1,1,1}  {1,1,1,1,1}  {1,1,1,1,1,1}
                  {1,1,1,2}  {1,1,1,1,2}  {1,1,1,1,1,2}
                  {1,2,2,2}  {1,1,1,2,2}  {1,1,1,1,2,2}
                             {1,1,2,2,2}  {1,1,1,1,2,3}
                             {1,2,2,2,2}  {1,1,1,2,2,2}
                                          {1,1,2,2,2,2}
                                          {1,2,2,2,2,2}
                                          {1,2,2,2,2,3}
                                          {1,2,3,3,3,3}
		

Crossrefs

Twice-partitions of this type are counted by A279785, without distinct sums A358914.
Without distinct sums we have A292432, complement A382214.
The strongly normal version without distinct sums is A292444, complement A381996.
Factorizations of this type are counted by A381633, without distinct sums A050326.
Normal multiset partitions of this type are counted by A381718, without distinct sums A116539.
For integer partitions the complement is A381990, ranks A381806, without distinct sums A382078, ranks A293243.
For integer partitions we have A381992, ranks A382075, without distinct sums A382077, ranks A382200.
The complement is counted by A382216.
The strongly normal version is A382430, complement A382460.
The case of a unique choice is counted by A382459, without distinct sums A382458.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,5}]

A331638 Number of binary matrices with nonzero rows, a total of n ones and each column with the same number of ones and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 3, 5, 16, 17, 140, 65, 1395, 2969, 22176, 1025, 1050766, 4097, 13010328, 128268897, 637598438, 65537, 64864962683, 262145, 1676258452736, 28683380484257, 24908619669860, 4194305, 30567710172480050, 8756434134071649, 62128557507554504, 21271147396968151093
Offset: 1

Views

Author

Andrew Howroyd, Jan 23 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
From Gus Wiseman, Apr 03 2025: (Start)
Also the number of multiset partitions such that (1) the blocks together cover an initial interval of positive integers, (2) the blocks are sets of a common size, and (3) the block-sizes sum to n. For example, the a(1) = 1 through a(4) = 16 multiset partitions are:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{1}} {{1},{1},{1}} {{1,2},{1,2}}
{{1},{2}} {{1},{1},{2}} {{1,2},{1,3}}
{{1},{2},{2}} {{1,2},{2,3}}
{{1},{2},{3}} {{1,2},{3,4}}
{{1,3},{2,3}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{1},{2}}
{{1},{1},{2},{2}}
{{1},{1},{2},{3}}
{{1},{2},{2},{2}}
{{1},{2},{2},{3}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
(End)

Crossrefs

For constant instead of strict blocks we have A034729.
Without equal sizes we have A116540 (normal set multipartitions).
Without strict blocks we have A317583.
For distinct instead of equal sizes we have A382428, non-strict blocks A326517.
For equal sums instead of sizes we have A382429, non-strict blocks A326518.
Normal multiset partitions: A255903, A255906, A317532, A382203, A382204, A382216.

Formula

a(n) = Sum_{d|n} A330942(n/d, d).
a(p) = 2^(p-1) + 1 for prime p.
Previous Showing 11-20 of 46 results. Next