cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A020018 Nearest integer to Gamma(n + 1/10)/Gamma(1/10).

Original entry on oeis.org

1, 0, 0, 0, 1, 3, 15, 91, 649, 5253, 47802, 482796, 5359036, 64844333, 849460756, 11977396665, 180858689642, 2911824903230, 49792205845229, 901238925798638, 17213663482753993, 345994636003355265, 7300486819670796088
Offset: 0

Views

Author

Keywords

Examples

			Gamma(1/10)/Gamma(1/10) = 1, so a(0) = 1.
Gamma(1 + 1/10)/Gamma(1/10) = 1/10 < 1/2, so a(1) = 0.
Gamma(2 + 1/10)/Gamma(1/10) = 11/100 < 1/2, so a(2) = 0.
Gamma(3 + 1/10)/Gamma(1/10) = 231/1000 < 1/2, so a(3) = 0.
Gamma(4 + 1/10)/Gamma(1/10) = 7161/10000 = 0.7161, so a(4) = 1.
Gamma(5 + 1/10)/Gamma(1/10) = 293601/100000 = 2.93601, so a(5) = 3.
Gamma(6 + 1/10)/Gamma(1/10) = 14973651/1000000 = 14.973651, so a(6) = 15.
		

Crossrefs

Cf. A045757, A020063, A020108, A000007 (decimal expansion of 1/10), A256191 (decimal expansion of Gamma(1/10)).

Programs

  • Magma
    [Round(Gamma(n +1/10)/Gamma(1/10)): n in [0..30]]; // G. C. Greubel, Jan 20 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Round[Gamma[n + 1/10]/Gamma[1/10]], {n, 0, 50}] (* G. C. Greubel, Jan 20 2018 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+1/10)/gamma(1/10)), ", ")) \\ G. C. Greubel, Jan 20 2018
    

A371881 Decimal expansion of Gamma(1/20).

Original entry on oeis.org

1, 9, 4, 7, 0, 0, 8, 5, 3, 1, 1, 2, 5, 5, 5, 1, 2, 8, 6, 4, 0, 4, 7, 3, 2, 0, 9, 6, 7, 7, 2, 7, 1, 2, 7, 5, 4, 5, 6, 3, 0, 4, 1, 9, 5, 8, 3, 3, 4, 1, 9, 7, 5, 6, 8, 1, 0, 8, 2, 7, 8, 3, 7, 5, 5, 3, 6, 4, 5, 5, 6, 2, 1, 9, 5, 6, 3, 6, 4, 9, 1, 0, 7, 9, 0, 7, 7, 7, 4, 9, 8, 4, 3, 7, 7, 4, 1, 4, 2, 3, 0, 9, 6, 5, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			19.4700853112555128640473209677271275456304195833419756810827837553645...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/20), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/20], 10, 120][[1]]
    RealDigits[2^(33/40) * 5^(5/16) * (1 + Sqrt[5])^(1/8) * Sqrt[5^(1/4) + Sqrt[2 + Sqrt[5]]] * Sqrt[Pi * Gamma[1/10]] * QPochhammer[E^(-2*Sqrt[5]*Pi)] / E^(Sqrt[5]*Pi/12), 10, 120][[1]]

Formula

Equals 2^(33/40) * 5^(5/16) * (1 + sqrt(5))^(1/8) * sqrt(5^(1/4) + sqrt(2 + sqrt(5))) * sqrt(Pi*Gamma(1/10)) * QPochhammer(exp(-2*sqrt(5)*Pi)) / exp(sqrt(5)*Pi/12).

A035323 Related to deca-factorial numbers A045757.

Original entry on oeis.org

1, 55, 3850, 298375, 24466750, 2079673750, 181228712500, 16084048234375, 1447564341093750, 131728355039531250, 12095058053629687500, 1118792869960746093750, 104133797896346367187500, 9743948231729552929687500, 915931133782577975390625000, 86441000750730796427490234375
Offset: 1

Views

Author

Keywords

Comments

Convolution of A035308(n-1) with A025755(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(-1 + (1 - 100 x)^(-1/10))/10, {x, 0, 13}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 10^(n-1)*A045757(n)/n!, where A045757(n) = (10*n-9)(!^10) = Product_{j=1..n} (10*j-9).
G.f.: (-1+(1-100*x)^(-1/10))/10.
D-finite with recurrence: n*a(n) + 10*(-10*n+9)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 10^(2*n-1) * n^(-9/10) / Gamma(1/10). - Amiram Eldar, Aug 18 2025

A371983 Decimal expansion of Gamma(1/30).

Original entry on oeis.org

2, 9, 4, 5, 4, 7, 7, 9, 7, 4, 5, 6, 9, 9, 6, 9, 4, 0, 1, 9, 6, 9, 6, 2, 0, 8, 2, 8, 8, 6, 3, 8, 3, 4, 5, 7, 3, 4, 7, 0, 1, 8, 7, 3, 6, 0, 5, 5, 7, 2, 9, 7, 1, 1, 0, 4, 6, 5, 6, 5, 4, 1, 5, 5, 6, 7, 4, 9, 8, 8, 0, 5, 4, 5, 9, 9, 0, 5, 0, 1, 2, 0, 8, 2, 1, 9, 5, 7, 9, 4, 8, 5, 0, 9, 6, 5, 2, 1, 2, 9, 3, 8, 7, 6, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			29.4547797456996940196962082886383457347018736055729711046565415567498...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/30), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/30], 10, 120][[1]]
    RealDigits[2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma[1/5] * Gamma[1/3] / ((10 + Sqrt[5] - Sqrt[75 + 30*Sqrt[5]])^(1/4) * Sqrt[Pi]), 10, 120][[1]]

Formula

Equals 3^(9/20) * sqrt(5 + sqrt(5)) * sqrt(sqrt(15) + sqrt(5 + 2*sqrt(5))) * Gamma(1/3) * Gamma(1/5) / (sqrt(Pi) * 2^(16/15) * 5^(1/6)).
Equals 2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma(1/5) * Gamma(1/3) / ((10 + sqrt(5) - sqrt(75 + 30*sqrt(5)))^(1/4) * sqrt(Pi)).
Equals 8*Pi^2 / (Gamma(17/30) * Gamma(19/30) * Gamma(23/30)).
Equals Gamma(7/30) * Gamma(11/30) * Gamma(13/30) / (2*Pi*A019815).

A366316 Decimal expansion of Gamma(1/10) / (Gamma(2/15) * Gamma(7/15)).

Original entry on oeis.org

7, 1, 2, 0, 2, 3, 9, 1, 2, 7, 2, 6, 6, 4, 9, 3, 4, 7, 5, 1, 4, 9, 1, 2, 3, 7, 0, 8, 8, 9, 1, 1, 1, 7, 4, 4, 0, 3, 9, 0, 6, 7, 4, 4, 1, 6, 2, 7, 0, 0, 3, 0, 6, 6, 9, 2, 9, 9, 7, 2, 3, 0, 0, 6, 4, 3, 9, 2, 0, 3, 5, 0, 7, 9, 0, 8, 7, 5, 2, 0, 5, 1, 7, 6, 6, 2, 1, 0, 4, 1, 6, 9, 9, 8, 9, 6, 9, 2, 7, 2, 2, 1, 9, 5, 7, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2023

Keywords

Examples

			0.71202391272664934751491237088911174403906744162700306692997...
		

Crossrefs

Cf. A256191.

Programs

  • Mathematica
    RealDigits[Gamma[1/10]/Gamma[2/15]/Gamma[7/15], 10, 120][[1]]
    RealDigits[(Sqrt[5] + 1) / (3^(1/10) * 2^(6/5) * Sqrt[Pi]), 10, 120][[1]]

Formula

Equals (1 + sqrt(5)) / (3^(1/10) * 2^(6/5) * sqrt(Pi)).
Previous Showing 11-15 of 15 results.