cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A257463 Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k.

Examples

			A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   2,     2,       3,        3,         4, ...
  1, 1,   5,    10,      23,       40,        73, ...
  1, 1,  17,    93,     465,     1746,      5741, ...
  1, 1,  73,  1417,   19834,   190131,   1398547, ...
  1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668.
Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263.
Main diagonal gives A334286.
Cf. A257462, A257493 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
    A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

A195644 T(n,k) is the number of lower triangles of an n X n 0..k array with all row sums equal to the length of the row and all column sums equal to the length of the column.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 15, 1, 1, 1, 3, 19, 199, 1, 1, 1, 3, 19, 379, 6247, 1, 1, 1, 3, 19, 391, 22506, 505623, 1, 1, 1, 3, 19, 391, 25428, 4063437, 105997283, 1, 1, 1, 3, 19, 391, 25532, 5422820, 2303397986, 58923059879, 1, 1, 1, 3, 19, 391, 25532, 5536654
Offset: 1

Views

Author

R. H. Hardin, Sep 21 2011

Keywords

Examples

			Table starts:
  1         1          1          1          1          1 ...
  1         1          1          1          1          1 ...
  1         3          3          3          3          3 ...
  1        15         19         19         19         19 ...
  1       199        379        391        391        391 ...
  1      6247      22506      25428      25532      25532 ...
  1    505623    4063437    5422820    5536654    5539434 ...
  1 105997283 2303397986 3868544673 4102276124 4116036800 ...
  ...
Some solutions for n=5, k=4:
..1..........1..........1..........1..........1..........1..........1
..1.1........1.1........2.0........2.0........2.0........2.0........2.0
..3.0.0......3.0.0......0.1.2......2.1.0......0.1.2......2.0.1......1.2.0
..0.1.1.2....0.1.1.2....1.1.0.2....0.1.1.2....1.1.0.2....0.0.2.2....1.2.1.0
..0.2.2.0.1..0.2.2.0.1..1.2.1.0.1..0.2.2.0.1..1.2.1.0.1..0.4.0.0.1..0.0.2.2.1
		

Crossrefs

Main diagonal is A195638.

Programs

  • PARI
    \\ adapted from program for A257493.
    T(n, k)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, min(k, h-i), for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1] + x^(r-1), 0, src[i, 2], r))); vecsum(Mat(M)[, 2])
    } \\ Andrew Howroyd, May 16 2020

Formula

T(n,k) = T(n,k-1) for k >= n, n >= 2. - Andrew Howroyd, May 16 2020

A003438 Number of 5 X 5 matrices with nonnegative integer entries and row and column sums equal to n.

Original entry on oeis.org

1, 120, 6210, 153040, 2224955, 22069251, 164176640, 976395820, 4855258305, 20856798285, 79315936751, 272095118010, 854560160105, 2486299719645, 6765755480415, 17356306529251, 42250330784180, 98137852369965
Offset: 0

Views

Author

Keywords

Comments

Number of 5 X 5 stochastic matrices of integers.

References

  • D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, p. 234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+103x+4306x^2+63110x^3+388615x^4+1115068x^5+ 1575669x^6+1115068x^7+388615x^8+63110x^9+4306x^10+103x^11+x^12)/ (1-x)^17,{x,0,30}],x] (* Harvey P. Dale, Aug 17 2013 *)

Formula

G.f.: (1 + 103*x + 4306*x^2 + 63110*x^3 + 388615*x^4 + 1115068*x^5 + 1575669*x^6 + 1115068*x^7 + 388615*x^8 + 63110*x^9 + 4306*x^10 + 103*x^11 + x^12)/(1-x)^17.
a(n) = Sum_{j=0..6} A005466(j) * binomial(4+j+n, 4+2*j). - Andrew Howroyd, Apr 09 2020

Extensions

More terms from Vladeta Jovovic, Feb 06 2000

A037302 Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume is v(n), then a(n) = ((n-1)^2)! * v(n) / n^(n-1).

Original entry on oeis.org

1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000
Offset: 1

Views

Author

Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)

Keywords

Comments

The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices.
Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002

Examples

			a(2)=1: The polytope of 2 X 2 matrices is the line segment from (1,0;0,1) to (0,1;1,0), with length v(2)=2, so a(2) = 1! * 2 / 2^1 = 1.
		

Crossrefs

Numerator and denominator of v(n) are in A078524 and A078525.
Row sums of A259473.
Cf. A257493.

Formula

a(n) = ((n-1)^2)!*A078524(n)/(n^(n-1)*A078525(n)). - Andrew Howroyd, Apr 11 2020

Extensions

v(9) computed by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu), Feb 25 2002
Edited by Dean Hickerson, Nov 27 2002
a(10) is based on a calculation of v(10) by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu) from Mar 13 2002 to May 18 2003

A110058 Number of nonnegative integer matrices of order n for which all row and column sums equal n.

Original entry on oeis.org

1, 1, 3, 55, 10147, 22069251, 602351808741, 215717608046511873, 1046591482728407939338275, 70417932475495769964322670258947, 66880713903767740581650957184096513655153, 909176713758393122455793478657031533216492953328933, 178876969166665269546249744608783223036842010760723370462856181, 514016665650183402309555825250370336139392333285719205357202846243695510965
Offset: 0

Views

Author

Brendan McKay, Sep 04 2005

Keywords

Comments

Computed by a method that involves summing a multivariate generating function over roots of unity.

Examples

			a(2) = 3 due to the matrices [1,1 | 1,1], [0,2 | 2,0] and [2,0 | 0,2].
		

Crossrefs

Main diagonal of A257493 and A333901.

Programs

  • Sage
    from sage.combinat.integer_matrices import IntegerMatrices
    [IntegerMatrices([n]*n, [n]*n).cardinality() for n in (0..6)] # Freddy Barrera, Dec 27 2018

Formula

log a(n) = 2(log 2)*n^2 - n*(log n) - n*(log 4*Pi) + (log n) + O(1). - Igor Pak, May 15 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 26 2015

A172862 Number of n X n 0..5 arrays with row sums 5 and column sums 5.

Original entry on oeis.org

1, 1, 6, 231, 40176, 22069251, 30767936616, 94161778046406, 569304690994400256, 6274236760589024662176, 118285830126660123474844752, 3623440212198461411381072575512, 172850452498398420310370097345242112
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=5 of A257493.

A172894 Number of n X n 0..6 arrays with row sums 6 and column sums 6.

Original entry on oeis.org

1, 1, 7, 406, 132724, 164176640, 602351808741, 5562418293759978, 114601242382721619224, 4801114002903931560293544, 379957050243738294456427057200, 53499490664883668314419655562118240
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=6 of A257493.

A172919 Number of n X n 0..7 arrays with row sums 7 and column sums 7.

Original entry on oeis.org

1, 1, 8, 666, 381424, 976395820, 8575979362560, 215717608046511873, 13590707419428422843904, 1933216160887575268614599040, 571506744082785127089569166384000
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=7 of A257493.

A172944 Number of n X n 0..8 arrays with row sums 8 and column sums 8.

Original entry on oeis.org

1, 1, 9, 1035, 981541, 4855258305, 94459713879600, 5945968652327831925, 1046591482728407939338275, 459761347800901006933211075259, 460129061613105910803354676484897475
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=8 of A257493.

A172958 Number of n X n 0..9 arrays with row sums 9 and column sums 9.

Original entry on oeis.org

1, 1, 10, 1540, 2309384, 20856798285, 842286559093240, 123538613356253145400, 56272722406349235035916800, 70417932475495769964322670258947, 219302242655748448462474951981229489200
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=9 of A257493.
Previous Showing 11-20 of 27 results. Next