A257463
Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0
A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 3, 4, ...
1, 1, 5, 10, 23, 40, 73, ...
1, 1, 17, 93, 465, 1746, 5741, ...
1, 1, 73, 1417, 19834, 190131, 1398547, ...
1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
-
with(numtheory):
b:= proc(n, i, k) option remember; `if`(n=1, 1,
add(`if`(d>i or bigomega(d)<>k, 0,
b(n/d, d, k)), d=divisors(n)))
end:
A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)
A195644
T(n,k) is the number of lower triangles of an n X n 0..k array with all row sums equal to the length of the row and all column sums equal to the length of the column.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 15, 1, 1, 1, 3, 19, 199, 1, 1, 1, 3, 19, 379, 6247, 1, 1, 1, 3, 19, 391, 22506, 505623, 1, 1, 1, 3, 19, 391, 25428, 4063437, 105997283, 1, 1, 1, 3, 19, 391, 25532, 5422820, 2303397986, 58923059879, 1, 1, 1, 3, 19, 391, 25532, 5536654
Offset: 1
Table starts:
1 1 1 1 1 1 ...
1 1 1 1 1 1 ...
1 3 3 3 3 3 ...
1 15 19 19 19 19 ...
1 199 379 391 391 391 ...
1 6247 22506 25428 25532 25532 ...
1 505623 4063437 5422820 5536654 5539434 ...
1 105997283 2303397986 3868544673 4102276124 4116036800 ...
...
Some solutions for n=5, k=4:
..1..........1..........1..........1..........1..........1..........1
..1.1........1.1........2.0........2.0........2.0........2.0........2.0
..3.0.0......3.0.0......0.1.2......2.1.0......0.1.2......2.0.1......1.2.0
..0.1.1.2....0.1.1.2....1.1.0.2....0.1.1.2....1.1.0.2....0.0.2.2....1.2.1.0
..0.2.2.0.1..0.2.2.0.1..1.2.1.0.1..0.2.2.0.1..1.2.1.0.1..0.4.0.0.1..0.0.2.2.1
-
\\ adapted from program for A257493.
T(n, k)={
local(M=Map(Mat([0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, min(k, h-i), for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1] + x^(r-1), 0, src[i, 2], r))); vecsum(Mat(M)[, 2])
} \\ Andrew Howroyd, May 16 2020
A003438
Number of 5 X 5 matrices with nonnegative integer entries and row and column sums equal to n.
Original entry on oeis.org
1, 120, 6210, 153040, 2224955, 22069251, 164176640, 976395820, 4855258305, 20856798285, 79315936751, 272095118010, 854560160105, 2486299719645, 6765755480415, 17356306529251, 42250330784180, 98137852369965
Offset: 0
- D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, p. 234.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. M. Jackson & G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4.4 (1975), 474-477. (Annotated scanned copy)
- M. L. Stein and P. R. Stein, Enumeration of Stochastic Matrices with Integer Elements, Report LA-4434, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Jun 1970. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
CoefficientList[Series[(1+103x+4306x^2+63110x^3+388615x^4+1115068x^5+ 1575669x^6+1115068x^7+388615x^8+63110x^9+4306x^10+103x^11+x^12)/ (1-x)^17,{x,0,30}],x] (* Harvey P. Dale, Aug 17 2013 *)
A037302
Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume is v(n), then a(n) = ((n-1)^2)! * v(n) / n^(n-1).
Original entry on oeis.org
1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000
Offset: 1
Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)
a(2)=1: The polytope of 2 X 2 matrices is the line segment from (1,0;0,1) to (0,1;1,0), with length v(2)=2, so a(2) = 1! * 2 / 2^1 = 1.
- Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope
- Matthias Beck, Stanley's Major Contributions to Ehrhart Theory, arXiv preprint arXiv:1407.0255 [math.CO], 2014.
- Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, arXiv:math/0202267 [math.CO], 2002-2005.
- Matthias Beck and Dennis Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Comput. Geom. 30 (2003), no. 4, 623-637.
- Petter Brändén, Jonathan Leake, and Igor Pak, Lower bounds for contingency tables via Lorentzian polynomials, arXiv:2008.05907 [math.CO], 2020.
- C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, arXiv:math/9806076 [math.CO], 1998.
- C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, Exper. Math. 8 (1999), 291-300.
- Jesús A. De Loera, Fu Liu, and Ruriko Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope, J. Algebraic Combin. 30 (2009), no. 1, 113-139.
- R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
v(9) computed by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu), Feb 25 2002
a(10) is based on a calculation of v(10) by Matthias Beck (matthias(AT)math.binghamton.edu) and Dennis Pixton (dennis(AT)math.binghamton.edu) from Mar 13 2002 to May 18 2003
A110058
Number of nonnegative integer matrices of order n for which all row and column sums equal n.
Original entry on oeis.org
1, 1, 3, 55, 10147, 22069251, 602351808741, 215717608046511873, 1046591482728407939338275, 70417932475495769964322670258947, 66880713903767740581650957184096513655153, 909176713758393122455793478657031533216492953328933, 178876969166665269546249744608783223036842010760723370462856181, 514016665650183402309555825250370336139392333285719205357202846243695510965
Offset: 0
a(2) = 3 due to the matrices [1,1 | 1,1], [0,2 | 2,0] and [2,0 | 0,2].
A172862
Number of n X n 0..5 arrays with row sums 5 and column sums 5.
Original entry on oeis.org
1, 1, 6, 231, 40176, 22069251, 30767936616, 94161778046406, 569304690994400256, 6274236760589024662176, 118285830126660123474844752, 3623440212198461411381072575512, 172850452498398420310370097345242112
Offset: 0
A172894
Number of n X n 0..6 arrays with row sums 6 and column sums 6.
Original entry on oeis.org
1, 1, 7, 406, 132724, 164176640, 602351808741, 5562418293759978, 114601242382721619224, 4801114002903931560293544, 379957050243738294456427057200, 53499490664883668314419655562118240
Offset: 0
A172919
Number of n X n 0..7 arrays with row sums 7 and column sums 7.
Original entry on oeis.org
1, 1, 8, 666, 381424, 976395820, 8575979362560, 215717608046511873, 13590707419428422843904, 1933216160887575268614599040, 571506744082785127089569166384000
Offset: 0
A172944
Number of n X n 0..8 arrays with row sums 8 and column sums 8.
Original entry on oeis.org
1, 1, 9, 1035, 981541, 4855258305, 94459713879600, 5945968652327831925, 1046591482728407939338275, 459761347800901006933211075259, 460129061613105910803354676484897475
Offset: 0
A172958
Number of n X n 0..9 arrays with row sums 9 and column sums 9.
Original entry on oeis.org
1, 1, 10, 1540, 2309384, 20856798285, 842286559093240, 123538613356253145400, 56272722406349235035916800, 70417932475495769964322670258947, 219302242655748448462474951981229489200
Offset: 0
Comments