cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A258230 Denominator of Integral_{x=0..1} Product_{k=1..n} (1-x^k) dx.

Original entry on oeis.org

2, 12, 105, 495, 55440, 340340, 1012647636, 12304749600, 5920545668637600, 1098951951860282520, 1572101004939647757775200, 2051717579526635495717258016, 244523633377266327241371614400, 32818916025992059215981780272862841200
Offset: 1

Views

Author

Vaclav Kotesovec, May 24 2015

Keywords

Comments

Limit n->infinity A258229(n) / a(n) = limit n->infinity Integral_{x=0..1} Product_{k=1..n} (1-x^k) dx = 8*sqrt(3/23)*Pi*sinh(sqrt(23)*Pi/6) / (2*cosh(sqrt(23)*Pi/3)-1) = A258232 = 0.368412535931433652321316597327851...

Examples

			Product_{k=1..n} (1-x^k)
n=1 1 - x
n=2 1 - x - x^2 + x^3
n=3 1 - x - x^2 + x^4 + x^5 - x^6
Integral Product_{k=1..n} (1-x^k) dx
n=1 x - x^2/2
n=2 x - x^2/2 - x^3/3 + x^4/4
n=3 x - x^2/2 - x^3/3 + x^5/5 + x^6/6 - x^7/7
For Integral_{x=0..1} set x=1
n=1 1 - 1/2 = 1/2, a(1) = 2
n=2 1 - 1/2 - 1/3 + 1/4 = 5/12, a(2) = 12
n=3 1 - 1/2 - 1/3 + 1/5 + 1/6 - 1/7 = 41/105, a(3) = 105
		

Crossrefs

Programs

  • Mathematica
    nmax=15; p=1; Table[p=Expand[p*(1-x^n)]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]], {n,1,nmax}] // Denominator

A258407 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^3 dx.

Original entry on oeis.org

1, 9, 6, 8, 8, 0, 6, 1, 5, 3, 1, 4, 5, 8, 8, 9, 7, 5, 3, 5, 3, 3, 5, 1, 3, 5, 8, 4, 7, 6, 9, 6, 6, 6, 8, 2, 9, 6, 6, 7, 3, 4, 3, 1, 7, 8, 3, 9, 1, 7, 5, 7, 5, 8, 6, 0, 9, 3, 3, 5, 7, 0, 6, 2, 6, 8, 9, 9, 0, 1, 5, 1, 1, 1, 1, 0, 5, 6, 2, 0, 9, 2, 2, 2, 9, 0, 5, 1, 0, 6, 0, 2, 7, 8, 3, 7, 4, 5, 6, 7, 3, 5, 4, 1, 8, 3
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k))^3 dx = Sum_{n>=0} (-1)^n * (2*n+1) / (m*n*(n+1)/2 + 1) is equal to
if 0
if m = 8: Pi/4
if m > 8: 2*Pi / (m * cos((Pi/2)*sqrt(1-8/m)))
Special values: m=4: Pi/(2*cosh(Pi/2)), m=9: 4*Pi/(9*sqrt(3)).
---
Integral_{x=-1..1} Product_{k>=1} (1-x^k)^3 dx = 2*Pi*(1 + sqrt(2) * cosh(sqrt(7)*Pi/4)) / cosh(sqrt(7)*Pi/2) = 1.32639350417409769439126... . - Vaclav Kotesovec, Jun 02 2015

Examples

			0.1968806153145889753533513584769666829667343178391757586093357...
		

Crossrefs

Programs

  • Maple
    evalf(2*Pi/cosh(sqrt(7)*Pi/2), 120);
    evalf(Sum((-1)^n * (2*n+1) / (n*(n+1)/2 + 1), n=0..infinity), 120);
  • Mathematica
    RealDigits[2*Pi*Sech[(Sqrt[7]*Pi)/2],10,105][[1]]
  • PARI
    2*Pi/cosh((sqrt(7)*Pi)/2) \\ Stefano Spezia, Aug 23 2025

Formula

Equals 2*Pi/cosh(sqrt(7)*Pi/2).
Equals Sum_{n>=0} (-1)^n * (2*n+1) / (n*(n+1)/2 + 1).

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    

A143440 Decimal expansion of the maximum value of the q-Pochhammer symbol along [ -1, 1].

Original entry on oeis.org

1, 2, 2, 8, 3, 4, 8, 8, 6, 7, 0, 3, 8, 5, 7, 5, 1, 1, 2, 5, 8, 6, 8, 7, 8, 3, 8, 9, 8, 6, 0, 0, 9, 6, 8, 2, 4, 9, 9, 0, 3, 2, 7, 9, 1, 5, 7, 6, 9, 5, 2, 6, 7, 4, 6, 7, 9, 6, 2, 9, 8, 3, 1, 5, 1, 0, 3, 0, 8, 2, 5, 4, 5, 1, 7, 7, 8, 3, 2, 8, 8, 6, 4, 8, 0, 1, 9, 9, 9, 3, 6, 3, 2, 4, 2, 5, 6, 1, 1, 9, 6, 4, 0, 7, 7
Offset: 1

Author

Eric W. Weisstein, Aug 14 2008

Keywords

Examples

			1.2283488670385751125...
		

Crossrefs

Programs

  • Mathematica
    q0 = q /. FindRoot[QPochhammer'[q] == 0, {q, -1/2}, WorkingPrecision -> 300]; RealDigits[QPochhammer[q0], 10, 105] // First (* Jean-François Alcover, Dec 05 2013 *)

A258408 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^(2*k)) dx.

Original entry on oeis.org

5, 7, 7, 3, 3, 2, 1, 2, 0, 1, 8, 3, 9, 7, 9, 7, 0, 5, 5, 5, 2, 5, 4, 6, 9, 6, 2, 0, 1, 5, 9, 0, 4, 1, 5, 5, 0, 8, 0, 1, 1, 9, 3, 1, 3, 8, 3, 5, 6, 3, 4, 9, 2, 4, 5, 5, 8, 9, 0, 8, 8, 0, 3, 7, 5, 1, 5, 2, 5, 2, 1, 6, 4, 5, 1, 9, 8, 7, 7, 8, 1, 3, 5, 0, 6, 3, 7, 1, 0, 7, 0, 0, 0, 0, 0, 7, 1, 5, 4, 0, 9, 7, 8, 4, 7, 8
Offset: 0

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

In general, Integral_{x=0..1} Product_{k>=1} (1-x^(m*k)) dx = Sum_{n} (-1)^n / (m*n*(3*n-1)/2 + 1) is equal to
if 0
(sqrt((24-m)*m) * (2*cosh(Pi/3*sqrt(24/m-1))-1))
if m = 24: Pi^2/(6*sqrt(3)) = A258414
if m > 24: 8*sqrt(3)*Pi*sin(Pi/6*sqrt(1-24/m)) /
(sqrt((m-24)*m) * (2*cos(Pi/3*sqrt(1-24/m))-1)).
Integral_{x=0..1} Product_{k=1..n} (1+x^(m*k)) dx, where m >= 1, is asymptotic to 2*(m+1)^(n+1)/(m*n^2).
Integral_{x=-1..1} Product_{k>=1} (1-x^(2*k)) dx = 8*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3)-1) = 1.154664240367959678... . - Vaclav Kotesovec, Jun 02 2015

Examples

			0.5773321201839797055525469620159041550801193138356349245589088...
		

Crossrefs

Programs

  • Maple
    evalf(4*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3) - 1), 120);
  • Mathematica
    RealDigits[4*Pi*Sqrt[3/11]*Sinh[Sqrt[11]*Pi/6] / (2*Cosh[Sqrt[11]*Pi/3] - 1),10,120][[1]]

Formula

Equals 4*Pi*sqrt(3/11) * sinh(sqrt(11)*Pi/6) / (2*cosh(sqrt(11)*Pi/3) - 1).

A369880 Decimal expansion of sinh(Pi/2)/(Pi/2)^2.

Original entry on oeis.org

9, 3, 2, 6, 8, 1, 3, 1, 4, 7, 8, 6, 3, 5, 1, 0, 1, 7, 7, 7, 3, 6, 9, 7, 5, 5, 7, 8, 0, 7, 9, 9, 0, 2, 3, 5, 0, 6, 6, 1, 9, 2, 0, 9, 3, 8, 7, 6, 9, 7, 5, 3, 1, 5, 4, 5, 6, 3, 4, 1, 2, 6, 4, 4, 0, 3, 1, 5, 6, 8, 4, 7, 9, 2, 1, 1, 6, 4, 4, 1, 1, 3, 9, 5, 6, 1, 9, 6, 2, 2, 8, 8, 5, 3, 9, 6, 5, 3, 8, 7, 4, 1, 7, 7, 1
Offset: 0

Author

Amiram Eldar, Feb 04 2024

Keywords

Examples

			0.93268131478635101777369755780799023506619209387697...
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 424.

Programs

  • Mathematica
    RealDigits[Sinh[Pi/2]/(Pi/2)^2, 10, 120][[1]]
  • PARI
    sinh(Pi/2)/(Pi/2)^2

Formula

Equals Sum_{k>=0} (-1/16)^A000120(k)/D(k)^4, where D(k) = A096111(k-1) for k >= 1, and D(0) = 1 (Borwein and Borwein, 1992).

A258412 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^k dx.

Original entry on oeis.org

2, 9, 8, 7, 8, 3, 3, 6, 5, 1, 0, 6, 5, 6, 7, 2, 9, 8, 7, 7, 0, 9, 5, 3, 7, 7, 2, 1, 1, 4, 0, 0, 7, 0, 9, 7, 3, 6, 0, 9, 2, 1, 8, 2, 5, 2, 5, 0, 1, 4, 7, 4, 3, 3, 4, 9, 0, 4, 5, 1, 1, 7, 4, 9, 9, 1, 7, 8, 0, 5, 0, 0, 4, 8, 9, 6, 7, 4, 3, 5, 2, 2, 0, 5, 8, 1, 0, 5, 0, 9, 8, 7, 2, 2, 4, 0, 2, 6, 3, 5, 0, 7, 6, 1, 6, 4
Offset: 0

Author

Vaclav Kotesovec, May 29 2015

Keywords

Comments

Integral_{x=0..1} Product_{k=1..n} (1+x^k)^k dx ~ 3*2^(n*(n+1)/2 + 1)/n^3.
Integral_{x=0..1} Product_{k=1..n} (1+x^k) dx ~ 2^(n+2)/n^2.
Integral_{x=0..1} Product_{k>=1} (1-x^k) dx = A258232 = 0.3684125359314...
Integral_{x=0..1} Product_{k=1..n} (1-x^k)^n dx ~ 1/n.
Integral_{x=0..1} Product_{k=1..n} (1+x^k)^n dx ~ 2^(n^2 + 2)/n^3.

Examples

			0.298783365106567298770953772114...
		

Crossrefs

Extensions

More digits from Vaclav Kotesovec, Oct 10 2023
Previous Showing 11-17 of 17 results.