cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A275316 Average of amicable pairs (x,y), ordered by the sum x+y given in A259953.

Original entry on oeis.org

252, 1197, 2772, 5292, 6300, 10800, 13440, 17856, 66960, 69120, 69552, 78624, 84240, 112320, 122760, 131040, 147420, 155520, 174096, 178560, 194400, 199584, 322812, 349272, 374976, 378000, 446400, 477603, 508896, 524160, 635040, 648000, 648000, 657720, 673920, 725760, 761400, 833280, 890568, 939600
Offset: 1

Views

Author

Timothy L. Tiffin, Jul 22 2016

Keywords

Comments

Each term represents the midpoint of an interval (x,y), where x (A260086) and y (A260087) form a pair of amicable numbers (A259933). The length and radius of each interval can be found in A275469 and A275470, respectively.
This sequence is monotonic (specifically, nondecreasing), since x+y (A259953) is nondecreasing. For a nonmonotonic ordering of these averages, see A275315.
It is unknown if there exists an amicable pair where x and y have opposite parity (one is even and the other is odd). If such a pair is ever found, then the compound adjective "same-parity" will need to be added to the name of this sequence.

Examples

			a(  1) = (     220 +      284)/2 =      504/2 =      252.
a(  2) = (    1184 +     1210)/2 =     2394/2 =     1197.
a(  3) = (    2620 +     2924)/2 =     5544/2 =     2772.
...      ...                 ...          ...         ...
a(  9) = (   66928 +    66992)/2 =   133920/2 =    66960.
a( 10) = (   67095 +    71145)/2 =   138240/2 =    69120.
a( 11) = (   63020 +    76084)/2 =   139104/2 =    69552.
...      ...                 ...          ...         ...
a( 15) = (  122368 +   123152)/2 =   245520/2 =   122760.
a( 16) = (  122265 +   139815)/2 =   262080/2 =   131040.
a( 17) = (  141664 +   153176)/2 =   294840/2 =   147420.
...      ...                 ...          ...         ...
a( 32) = (  609928 +   686072)/2 =  1296000/2 =   648000.
a( 33) = (  643336 +   652664)/2 =  1296000/2 =   648000.
...      ...                 ...          ...         ...
a(107) = ( 9478910 + 11049730)/2 = 20528640/2 = 10264320.
a(108) = (10254970 + 10273670)/2 = 20528640/2 = 10264320.
...      ...                 ...          ...         ...
a(139) = (17754165 + 19985355)/2 = 37739520/2 = 18869760.
a(140) = (17844255 + 19895265)/2 = 37739520/2 = 18869760.
...      ...                 ...          ...         ...
		

Crossrefs

Programs

  • Mathematica
    With[{s = PositionIndex@ Array[DivisorSigma[1, #] &, 10^6]}, Flatten@ Map[Mean, Apply[Join, Map[Function[n, Select[Subsets[Lookup[s, n], {2}], Total@ # == n &]], Sort@ Select[Keys@ s, Length@ Lookup[s, #] > 1 &]]]]] (* Michael De Vlieger, Oct 22 2017 *)

Formula

a(n) = [A260086(n) + A260087(n)]/2 = A259953(n)/2.

A383239 Integers k such that there exists an integer 0

Original entry on oeis.org

1740, 7776, 22428, 55968, 106140, 143910, 198792, 246510, 309582, 326196, 411138, 421596, 428256, 590112, 639288, 697158, 870552, 941094, 958716, 1060956, 1087776, 1105884, 1269828, 1341660, 1361568, 1447620, 1495494, 1512810, 1626324, 1727940, 1819392
Offset: 1

Views

Author

S. I. Dimitrov, Apr 20 2025

Keywords

Comments

S. I. Dimitrov introduced the notion of (alpha_1,...,alpha_k)-multiamicable k-tuples.
The asymptotic density of (alpha_1, alpha_2)-multiamicable pairs relative to the positive integers is 0.

Examples

			For k=2, alpha_1=1, alpha_2=2 we have (1560, 1740), (7380, 7776), (20664, 22428), (543456, 590112), (588744, 639288),
		

Crossrefs

Programs

  • PARI
    isok(k) = my(s=sigma(k), m=s-2*k); m>0 && mMichel Marcus, Apr 28 2025

Formula

We say that the natural numbers n_1,..., n_k form an (alpha_1,...,alpha_k)-multiamicable k-tuple if sigma(n_1)=sigma(n_2)=...=sigma(n_k)=alpha_1n_1+alpha_2n_2+...+alpha_kn_k, where alpha_1,...,alpha_k are positive integers, where sigma(n) is the sum of the divisors of n.

Extensions

More terms from Sean A. Irvine, May 04 2025

A180202 The product of the two numbers in an amicable pair, A002025(n) * A002046(n).

Original entry on oeis.org

62480, 1432640, 7660880, 27931280, 39685376, 116636864, 179299575, 318523136, 4794813680, 4483640576, 4773473775, 6100571295, 7076217500, 12475715175, 17094480975, 15069863936, 21699524864, 24011966300, 30304399616
Offset: 1

Views

Author

T. D. Noe, Aug 15 2010

Keywords

Comments

This sequence initially shares many terms with A180163 because small amicable pairs are sometimes consecutive terms in the sorted list of amicable numbers, A063990.
First differs from A180163 at a(9). - Omar E. Pol, Oct 25 2017

Examples

			a(9) = A002025(9) * A002046(9) = 63020 * 76084 = 4794813680.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1,n]-n; smallAmicableQ[n_] := Module[{b=s[n]}, n
    				

Formula

a(n) = A259180(2n-1) * A259180(2n). - Omar E. Pol, Oct 22 2017

A259953 The sum (in nondecreasing order) of the two numbers in an amicable pair.

Original entry on oeis.org

504, 2394, 5544, 10584, 12600, 21600, 26880, 35712, 133920, 138240, 139104, 157248, 168480, 224640, 245520, 262080, 294840, 311040, 348192, 357120, 388800, 399168, 645624, 698544, 749952, 756000, 892800, 955206, 1017792, 1048320, 1270080, 1296000, 1296000, 1315440, 1347840, 1451520, 1522800, 1666560, 1781136, 1879200, 2041200
Offset: 1

Author

Omar E. Pol, Jul 10 2015

Keywords

Comments

Also the common value of sigma(x) = sigma(y) of the amicable pairs (x < y) ordered by nondecreasing sum (x + y). See A259933.
Duplicates occur, e.g., a(32) = a(33) = 1296000.
Another version of A180164.
First differs from both A161005 and A180164 at a(9).

Examples

			------------------------------------------
      A m i c a b l e   p a i r      Sum
------------------------------------------
n     A260086(n)  +  A260087(n)  =   a(n)
------------------------------------------
1         220            284          504
2        1184           1210         2394
3        2620           2924         5544
4        5020           5564        10584
5        6232           6368        12600
6       10744          10856        21600
7       12285          14595        26880
8       17296          18416        35712
9       66928          66992       133920
10      67095          71145       138240
11      63020          76084       139104
12      69615          87633       157248
...       ...            ...          ...
32     609928         686072      1296000
33     643336         652664      1296000
...
		

Formula

a(n) = A259933(2n-1) + A259933(2n) = A260086(n) + A260087(n).

A262622 Amicable pairs of even numbers.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 17296, 18416, 63020, 76084, 66928, 66992, 79750, 88730, 122368, 123152, 141664, 153176, 142310, 168730, 171856, 176336, 176272, 180848, 185368, 203432, 196724, 202444, 280540, 365084, 308620, 389924, 319550, 430402, 356408, 399592, 437456, 455344
Offset: 1

Author

Omar E. Pol, Nov 09 2015

Keywords

Comments

If there are no amicable pairs whose members have distinct parity then this is also the even terms of A259180.
First differs from A063990, A259180, A259933 at a(13).
First differs from A262624 at a(16).

Programs

  • PARI
    listap(nn) = {forstep(n=2, nn, 2, m = sigma(n)-n; if ((m > n) && (n==sigma(m)-m), print1(n, ", ", m, ", ")););} \\ Michel Marcus, Nov 14 2015

A291422 List of pairs of amicable numbers (m,n) where the sum of the pair is divisible by 10.

Original entry on oeis.org

6232, 6368, 10744, 10856, 12285, 14595, 66928, 66992, 67095, 71145, 79750, 88730, 100485, 124155, 122265, 139815, 122368, 123152, 141664, 153176, 142310, 168730, 176272, 180848, 185368, 203432, 356408, 399592, 437456, 455344, 522405, 525915, 600392, 669688, 609928, 686072
Offset: 1

Author

Zoltan Galantai, Aug 22 2017

Keywords

Comments

The sequence lists those amicable pairs (m,n) in increasing order where the sum of the amicable pair is divisible by ten.
Up to the first 5001 amicable pairs, 88.1% of the sums satisfy this condition (up to the first 100 amicable pairs: 74%; up to the first 1000: 82.5%; up to 2000: 85.25%). So the conjecture here is that as the number of the amicable numbers approaches infinity, the percentage of the sums of the amicable pairs divisible by ten approaches 100%. [corrected by Paul Zimmermann, Feb 05-06 2019]
Among the 1947667 pairs up to 19 digits from Sergei Chernykh's database, there are 1872573 pairs with m+n divisible by ten, thus about 96.14%. - Paul Zimmermann, Feb 07 2019

Examples

			The sum of 6232 and 6368 is divisible by ten, thus the (6232, 6368) amicable pair belongs to the sequence. On the other hand, the (220, 284) amicable pair does not qualify since its sum is 504.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1994, pp. 55-58.
  • Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chappman and HALL/CRC, 2003, pp. 67-69.

Programs

  • PARI
    lista(nn) = {for (n=1, nn, spd = sigma(n)-n; if ((spd > n) && (sigma(spd)-spd == n) && !((n + spd) % 10), print1(n, ", ", spd, ", ")););} \\ Michel Marcus, Aug 26 2017

A307962 Lesser of coreful amicable numbers pair: numbers (m, n) such that csigma(m) = csigma(n) = m + n, where csigma(n) is the sum of the coreful divisors of n (A057723).

Original entry on oeis.org

1718200, 4818880, 5154600, 12027400, 14456640, 22336600, 29209400, 32645800, 33732160, 36082200, 39518600, 49827800, 53264200, 62645440, 63573400, 67009800, 70446200, 73882600, 80755400, 81920960, 87628200, 91064600, 91558720, 97937400, 101196480, 101373800
Offset: 1

Author

Amiram Eldar, May 08 2019

Keywords

Comments

The larger counterparts are in A307963.
If (m, n) is an amicable pair (A259180), then the pair (m*k, n*k) with k=rad(m*n) is a coreful amicable pair (rad(i)=A007947(i) is the squarefree kernel of i), and so are all the pairs (m*k*s, n*k*s) where s is a squarefree number with gcd(s, k) = 1. Proof: k = rad(m*n) = rad(m)*rad(n)/rad(gcd(m,n)), csigma(m*k) = csigma(m*rad(m)*j) where j = rad(n)/rad(gcd(m,n)) is squarefree and coprime to m*rad(m), so csigma(m*k) = j * csigma(m*rad(m)) = j * rad(m)* sigma(m) = rad(m)*rad(n)/rad(gcd(m,n)) * sigma(m) = rad(m)*rad(n)/rad(gcd(m,n)) * (n+m) = k *(n+m) = csigma(n*k).

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1)-1; csigma[1]=1; csigma[n_] := Times @@ (f @@@ FactorInteger[n]); s={}; Do[m = csigma[n] - n; If[m > n && csigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^8}]; s

Extensions

Wrong terms corrected by Amiram Eldar, Dec 02 2019

A383483 Numbers k such that k = sigma(m)-m where m = sigma(3*k)-3*k.

Original entry on oeis.org

3, 15, 5919, 118719, 179871, 33750303
Offset: 1

Author

S. I. Dimitrov, Apr 28 2025

Keywords

Comments

S. I. Dimitrov introduced the notion of (alpha, beta)-amicable pairs.

Examples

			For alpha=1, beta=3 we have (3, 4), (15, 33), (5919, 7905).
Here (3, 4) is such a pair because 3=sigma(4)-4 and 4=sigma(3*3)-3*3.
		

Crossrefs

Programs

  • PARI
    isok(k) = my(m = sigma(3*k) - 3*k); if (m>0, sigma(m) - m == k); \\ Michel Marcus, Apr 28 2025

Formula

We say that the numbers m and n form an (alpha, beta)-amicable pair if sigma(alpha*n)-alpha*n=m and sigma(beta*m)-beta*m=n, where alpha and beta are positive integers, and sigma(n) is the sum of the divisors of n.

Extensions

a(4)-a(6) from Michel Marcus, Apr 28 2025

A385586 Primes p such that there exists prime q < p such that sigma(p+1) = sigma(q+1) = p + q.

Original entry on oeis.org

37, 34687, 65587, 2089951, 8161477, 8340613, 18927067, 25855567, 64346413, 95150203, 238973101, 257658061, 277743397, 322210813, 349883707, 578403913, 704710543, 1121445337, 1654635937, 1741780693, 1804380007, 1963734061, 2346701941, 2360966173, 2720420707, 3232299517, 4343250181, 4925742973, 8085909913, 9044601133
Offset: 1

Author

S. I. Dimitrov, Jul 03 2025

Keywords

Comments

The primes p and q form a P(1, 1)-amicable pair. See Dimitrov link.

Examples

			(23, 37) is such a pair because sigma(23+1)=sigma(37+1) = 23 + 37.
		

Crossrefs

Programs

  • PARI
    upto(n) = {
        res = List();
        forprime(p = 2, n,
            s = sigma(p+1);
            q = s - p;
            if(q < p && isprime(q) && sigma(q+1) == s,
                print([p, q]);
                listput(res, p);
            );
        ); res
    } \\ David A. Corneth, Jul 03 2025

Extensions

More terms from David A. Corneth, Jul 03 2025

A066873 Number of amicable pairs where smaller term of the pair is less than 10^n.

Original entry on oeis.org

0, 0, 1, 5, 13, 42, 108, 236, 586, 1427, 3340, 7642, 17519, 39374, 87102, 190775, 415523, 901312, 1947667, 4197267
Offset: 1

Author

Shyam Sunder Gupta, Jan 21 2002

Keywords

Examples

			There are 13 pairs with smaller term of the pair < 10^5, so a(5) = 13.
		

Crossrefs

Cf. A063990, A259180 (amicable pairs).

Extensions

Edited by Klaus Brockhaus, May 31 2003
a(15)-a(18) (from Sergei Chernykh's site) added by Amiram Eldar, Aug 19 2017
a(19) (from Sergei Chernykh's site) added by Amiram Eldar, Apr 05 2019
a(20) (from Sergei Chernykh's site) added by Amiram Eldar, Dec 13 2020
Previous Showing 21-30 of 68 results. Next