cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A279569 Number of length n inversion sequences avoiding the patterns 110, 120, and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 91, 409, 1953, 9763, 50583, 269697, 1472080, 8193306, 46359256, 266023710, 1545165168, 9070274236, 53739936609, 321025143482, 1931764542709, 11700651842997, 71288958790413, 436662467207291, 2687623420862395, 16615163817647042, 103131646740020637
Offset: 0

Views

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 110, 120, and 210.
It was shown that a_n also counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j >= e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 100, 120, and 210.

Examples

			The length 4 inversion sequences avoiding (110, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0121, 0122, 0123.
The length 4 inversion sequences avoiding (100, 120, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, i-min(t, j)+2, abs(t-j)+1), j=1..i))
        end:
    a:= n-> b(n, 1$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 21 2017
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, i - Min[t, j] + 2, Abs[t-j]+1], {j, 1, i}]]; a[n_] :=  b[n, 1, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * (27/4)^n / n^(3/2), where c = 0.0111684107126703379786799829348... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 21 2017

A279571 Number of length n inversion sequences avoiding the patterns 100, 101, and 201.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 424, 2106, 11102, 61436, 353980, 2110366, 12955020, 81569168, 525106698, 3447244188, 23028080268, 156246994264, 1075127143948, 7492458675666, 52820934349420, 376331681648402, 2707312468516446, 19650530699752470, 143807774782994412, 1060472244838174574, 7875713244761349666, 58876660310205135380, 442862775457168812898, 3350397169412102710198
Offset: 0

Views

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <= e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 100, 101, and 201.

Examples

			The length 4 inversion sequences avoiding (100,101,201) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0102, 0103, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, s, m) option remember;
          `if`(n=0, 1, add(b(n-1, i+1, s minus {$j..m-
          `if`(j=m, 1, 0)} union {i+1}, max(m, j)), j=s))
        end:
    a:= n-> b(n, 1, {1}, 0):
    seq(a(n), n=0..15);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    b[n_, i_, s_, m_] := b[n, i, s, m] = If[n == 0, 1, Sum[b[n-1, i+1, s  ~Complement~ Range[j, m - If[j == m, 1, 0]] ~Union~ {i+1}, Max[m, j]], {j, s}]];
    a[n_] := b[n, 1, {1}, 0];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, after Alois P. Heinz *)

Extensions

a(10)-a(25) from Alois P. Heinz, Feb 22 2017
a(26)-a(29) from Vaclav Kotesovec, Oct 07 2021

A279573 Number of length n inversion sequences avoiding the patterns 120 and 210.

Original entry on oeis.org

1, 1, 2, 6, 23, 102, 499, 2625, 14601, 84847, 510614, 3161964, 20050770, 129718404, 853689031, 5701759424, 38574689104, 263936457042, 1824032887177, 12718193293888, 89386742081688, 632746535420834, 4508140253686638, 32308561883462867, 232790342330880572
Offset: 0

Views

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j > e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 120 and 210.

Examples

			The length 4 inversion sequences avoiding (120,210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Crossrefs

Formula

a(n) ~ c * 8^n / n^(3/2), where c = 0.0013548789253263217919... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(24) from Alois P. Heinz, Feb 21 2017

A279554 Number of length n inversion sequences avoiding the patterns 010, 101, 120, 201, and 210.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 188, 733, 2979, 12495, 53708, 235396, 1048168, 4728757, 21569339, 99309057, 460932778, 2154402107
Offset: 0

Views

Author

Megan A. Martinez, Dec 15 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 101, 120, 201, and 210.

Examples

			The length 3 inversion sequences are 000, 001, 002, 011, 012.
The length 4 inversion sequences are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Extensions

a(10)-a(11) from Alois P. Heinz, Feb 24 2017
a(12)-a(17) from Bert Dobbelaere, Dec 30 2018

A279558 Number of length n inversion sequences avoiding the patterns 010, 120, and 210.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 200, 830, 3654, 16869, 80963, 401300, 2043610, 10649335, 56604706, 306101789, 1680515427
Offset: 0

Views

Author

Megan A. Martinez, Jan 17 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j > e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 010, 120, and 210.

Examples

			The length 4 inversion sequences avoiding (010, 120, 210) are 0000, 0001, 0002, 0003, 0011, 0012, 0013, 0021, 0022, 0023, 0111, 0112, 0113, 0122, 0123.
		

Crossrefs

Extensions

a(10)-a(12) from Alois P. Heinz, Feb 24 2017
a(13)-a(16) from Bert Dobbelaere, Dec 30 2018

A279572 Number of length n inversion sequences avoiding the patterns 120, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 23, 101, 484, 2468, 13166, 72630, 411076, 2374188, 13938018, 82932254, 499031324, 3031610924, 18568429963, 114541486785, 710973143614, 4437415155234, 27831038618735, 175318861863701, 1108762012137252, 7037137177329268, 44808588430903068
Offset: 0

Views

Author

Megan A. Martinez, Feb 21 2017

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i e_j <> e_k and e_i > e_k. This is the same as the set of length n inversion sequences avoiding 120, 201, and 210.

Examples

			The length 4 inversion sequences avoiding (120, 201, 210) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113, 0121, 0122, 0123.
		

Crossrefs

Extensions

a(12)-a(15) from Bert Dobbelaere, Dec 30 2018
a(16)-a(24) from Toufik Mansour et al. added by Stefano Spezia, Jan 20 2024

A336070 Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1).

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 567, 3440, 23286, 173704, 1414102, 12465119, 118205428, 1199306902, 12958274048, 148502304614, 1798680392716, 22953847041950, 307774885768354, 4325220458515307, 63563589415836532, 974883257009308933, 15575374626562632462, 258780875395778033769, 4464364292401926006220
Offset: 0

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Comments

From Joerg Arndt, Jan 20 2024: (Start)
a(n) is the number of weak ascent sequences of length n.
A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.
The number of length-n weak ascent sequences with maximal number of weak ascents is A000108(n).
(End)

Examples

			From _Joerg Arndt_, Jan 20 2024: (Start)
There are a(4) = 23 weak ascent sequences (dots for zeros):
   1:  [ . . . . ]
   2:  [ . . . 1 ]
   3:  [ . . . 2 ]
   4:  [ . . . 3 ]
   5:  [ . . 1 . ]
   6:  [ . . 1 1 ]
   7:  [ . . 1 2 ]
   8:  [ . . 1 3 ]
   9:  [ . . 2 . ]
  10:  [ . . 2 1 ]
  11:  [ . . 2 2 ]
  12:  [ . . 2 3 ]
  13:  [ . 1 . . ]
  14:  [ . 1 . 1 ]
  15:  [ . 1 . 2 ]
  16:  [ . 1 1 . ]
  17:  [ . 1 1 1 ]
  18:  [ . 1 1 2 ]
  19:  [ . 1 1 3 ]
  20:  [ . 1 2 . ]
  21:  [ . 1 2 1 ]
  22:  [ . 1 2 2 ]
  23:  [ . 1 2 3 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1))
        end:
    a:= n-> b(n, -1$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]];
    a[n_] := b[n, -1, -1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 18 2025, after Alois P. Heinz *)
  • PARI
    \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
    N=40;
    M=matrix(N,N,r,c,-1);  \\ memoization
    a(n,k)=
    {
        if ( n==0 && k==0, return(1) );
        if ( k==0, return(0) );
        if ( n==0, return(0) );
        if ( M[n,k] != -1 , return( M[n,k] ) );
        my( s );
        s = sum( i=0, n, sum( j=0, k-1,
             (-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) );
        M[n,k] = s;
        return( s );
    }
    for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); );
    \\ print triangle a(n,k), see A369321:
    \\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print(););
    \\ Joerg Arndt, Jan 20 2024

Extensions

a(0)=1 prepended and more terms from Joerg Arndt, Jan 20 2024

A360052 Number of length n inversion sequences avoiding the patterns 010 and 201 (or 010 and 210).

Original entry on oeis.org

1, 1, 2, 5, 15, 53, 214, 958, 4650, 24103, 131974, 757011, 4519321, 27933252, 177987808, 1165057411, 7811122974, 53506838952, 373693431140, 2656088059747, 19182588092365, 140577110057850, 1044102585724522, 7851149068600037, 59714190403840142, 459001044591439621
Offset: 0

Views

Author

Benjamin Testart, Jan 23 2023

Keywords

Crossrefs

A279544 Number of length n inversion sequences avoiding the patterns 000, 010, 100, 110, 120, and 210.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 73, 214, 651, 2040, 6549, 21453, 71485, 241702, 827603, 2865087, 10014927, 35307628, 125427569, 448616693, 1614432373, 5842129120, 21247505098, 77631329535, 284832049361, 1049092809734, 3877749157355, 14380314221305, 53490244751332
Offset: 0

Views

Author

Megan A. Martinez, Dec 14 2016

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i= e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 000, 010, 100, 110, 120, and 210.

Examples

			For n=3, the inversion sequences are 001, 002, 011, 012.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i=0, 1, add(
          b(n-min(m, j), i-1, abs(m-j)), j=1..n-i+1))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 15 2016
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = If[i == 0, 1, Sum[b[n - Min[m, j], i - 1, Abs[m - j]], {j, 1, n - i + 1}]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

a(n) ~ c * 4^n / n^(3/2), where c = 0.0549097036253448014962069269284638611865763295943683310517... - Vaclav Kotesovec, Oct 07 2021

Extensions

a(10)-a(28) from Alois P. Heinz, Dec 14 2016
Name and description corrected by Nicholas R. Beaton, May 02 2024

A336071 Number of inversion sequences avoiding the vincular pattern 1-01 (or 1-10).

Original entry on oeis.org

1, 2, 6, 23, 107, 584, 3655, 25790, 202495, 1750763
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

Previous Showing 21-30 of 34 results. Next