cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A267252 Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.

Original entry on oeis.org

50383, 45779, 41381, 37189, 33203, 29423, 25849, 22481, 19319, 16363, 13613, 11069, 8731, 6599, 4673, 2953, 1439, 131, 971, 1867, 2557, 3041, 3319, 3391, 3257, 2917, 2371, 1619, 661, 503, 1873, 3449, 5231, 7219, 9413, 11813, 14419, 17231, 20249, 23473, 26903
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Comments

This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

Examples

			33203 is in this sequence since 103*4^2 - 4707*4 + 50383  = 1648-18828+50383 = 33203 is prime.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ Altug Alkan, Apr 28 2016, corrected by Hugo Pfoertner, Dec 13 2019

Extensions

Title corrected by Hugo Pfoertner, Dec 13 2019

A268200 Nonnegative numbers n such that abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 62, 65, 67, 70, 72, 73, 74, 75, 84, 85, 86, 90, 92
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Comments

50 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^4 - 97#^3 + 3294#^2 - 45458# + 213589] &]
  • PARI
    is(n)=isprime(abs(n^4-97*n^3+3294*n^2-45458*n+213589)) \\ Charles R Greathouse IV, Feb 20 2017

A272555 Primes of the form abs(1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236)) in order of increasing nonnegative n.

Original entry on oeis.org

965201, 653687, 429409, 272563, 166693, 98321, 56597, 32969, 20873, 15443, 13241, 12007, 10429, 7933, 4493, 461, 3583, 6961, 9007, 9157, 7019, 2423, 4549, 13553, 23993, 35051, 45737, 54959, 61613, 64693, 63421, 57397, 46769, 32423, 16193, 1091, 8443, 6271
Offset: 1

Views

Author

Robert Price, May 02 2016

Keywords

Examples

			166693 is in this sequence since abs(1/(36)(4^6 - 126*4^5 + 6217*4^4 - 153066*4^3 + 1987786*4^2 - 13055316*4 + 34747236)) = abs((4096 - 129024 + 1591552 - 9796224 + 31804576 - 5222126 + 34747236)/36) = 166693 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236), PrimeQ[#] &]

A272324 Primes of the form abs(82n^3 - 1228n^2 + 6130n - 5861) in order of increasing nonnegative n.

Original entry on oeis.org

5861, 877, 2143, 3691, 4259, 4339, 4423, 5003, 6571, 9619, 14639, 22123, 32563, 46451, 64279, 86539, 113723, 146323, 184831, 229739, 281539, 340723, 407783, 483211, 567499, 661139, 764623, 878443, 1003091, 1139059, 1286839, 1446923, 2005919, 2693363, 3229579
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Examples

			4259 is in this sequence since 82*4^3 - 1228*4^2 + 6130*4 - 5861 = 5248-19648+24520-5861 = 4259 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[82n^3 - 1228n^2 + 6130n - 5861, PrimeQ[#] &]

A272325 Nonnegative numbers n such that n^4 + 853n^3 + 2636n^2 + 3536n + 1753 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 30, 34, 37, 41, 43, 46, 50, 52, 53, 56, 59, 60, 61, 64, 66, 67, 68, 71, 76, 79, 81, 84, 87, 88, 89, 91, 92, 95, 96, 98, 99, 103, 106, 109, 118, 124, 126, 127, 128, 132
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Comments

21 is the smallest number not in this sequence.

Examples

			4 is in this sequence since 4^4 + 853*4^3 + 2636*4^2 + 3536*4 + 1753 = 256+54592+42176+14144+1753 = 112921 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^4 + 853#^3 + 2636#^2 + 3536# + 1753] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(n^4+853*n^3+2636*n^2+3536*n+1753), print1(n, ", "))); \\ Altug Alkan, Apr 25 2016

A272326 Primes of the form k^4 + 853*k^3 + 2636*k^2 + 3536*k + 1753 in order of increasing nonnegative k.

Original entry on oeis.org

1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 10672369, 15456403, 17324929, 19339909, 26321233, 38031841, 48822439, 66193219
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Examples

			112921 is in this sequence since 4^4 + 853*4^3 + 2636*4^2 + 3536*4 + 1753 = 256+54592+42176+14144+1753 = 112921 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=n^4+853*n^3+2636*n^2+3536*n+1753), print1(p, ", "))); \\ Altug Alkan, Apr 25 2016

A272554 Nonnegative numbers n such that abs(1/(36)(n^6 - 126n^5 + 6217n^4 - 153066n^3 + 1987786n^2 - 13055316n + 34747236)) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 73, 78
Offset: 1

Views

Author

Robert Price, May 02 2016

Keywords

Comments

55 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(1/(36)(4^6 - 126*4^5 + 6217*4^4 - 153066*4^3 + 1987786*4^2 - 13055316*4 + 34747236)) = abs((4096 - 129024 + 1591552 - 9796224 + 31804576 - 5222126 + 34747236)/36) = 166693 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[1/(36)(#^6 - 126#^5 + 6217#^4 - 153066#^3 + 1987786#^2 - 13055316# + 34747236)] &]

A272710 Primes of the form abs((1/4)*(n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) in order of increasing nonnegative n.

Original entry on oeis.org

1705829, 1313701, 991127, 729173, 519643, 355049, 228581, 134077, 65993, 19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, 383, 3733, 4259, 1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977
Offset: 1

Views

Author

Robert Price, May 04 2016

Keywords

Examples

			519643 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316), PrimeQ[#] &]

A247163 Nonnegative numbers n such that abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 59, 60, 61, 64, 67, 68, 69, 74, 75, 76
Offset: 1

Views

Author

Robert Price, May 04 2016

Keywords

Comments

62 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[1/4 (#^5 - 133#^4 + 6729#^3 - 158379#^2 + 1720294# - 6823316)] &]

A267069 Nonnegative numbers n such that abs(103*n^2 - 4707*n + 50383) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 47, 49, 50, 51, 52, 53, 54, 57, 59, 60, 61, 63, 64, 65, 66, 67, 69, 73, 74, 76, 77, 80
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Comments

43 is the smallest number not in this sequence.
See A267252 for more information. - Hugo Pfoertner, Dec 13 2019

Examples

			4 is in this sequence since 103*4^2 - 4707*4 + 50383  = 1648-18828+50383 = 33203 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[103#^2 - 4707# + 50383 ] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(abs(103*n^2-4707*n+50383)), print1(n, ", "))); \\ Altug Alkan, Apr 28 2016, corrected by Hugo Pfoertner, Dec 13 2019

Extensions

Title corrected by Hugo Pfoertner, Dec 13 2019
Previous Showing 11-20 of 21 results. Next