cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 100 results. Next

A289079 Number of orderless same-trees of weight n with all leaves equal to 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 13, 1, 3, 3, 22, 1, 16, 1, 15, 3, 3, 1, 151, 2, 3, 6, 17, 1, 41, 1, 334, 3, 3, 3, 637, 1, 3, 3, 275, 1, 56, 1, 21, 19, 3, 1, 15591, 2, 27, 3, 23, 1, 902, 3, 516, 3, 3, 1, 7858, 1, 3, 21, 69109, 3, 98, 1, 27, 3, 67, 1, 811756, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2017

Keywords

Comments

a(n) is also the number of orderless same-trees of weight n with all leaves greater than 1.

Examples

			The a(12)=13 orderless same-trees with all leaves greater than 1 are: ((33)(33)), ((33)(222)), ((33)6), ((222)(222)), ((222)6), (66), ((22)(22)(22)), ((22)(22)4), ((22)44), (444), (3333), (222222), 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1, add(
          binomial(a(n/d)+d-1, d), d=divisors(n) minus {1}))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jul 05 2017
  • Mathematica
    a[n_]:=If[n===1,1,Sum[Binomial[a[n/d]+d-1,d],{d,Rest[Divisors[n]]}]];
    Array[a,100]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = sumdiv(n, d, binomial(v[n/d]+d-1, d))); v} \\ Andrew Howroyd, Aug 20 2018
    
  • Python
    from sympy import divisors, binomial
    l=[0, 1]
    for n in range(2, 101): l+=[sum([binomial(l[n//d] + d - 1, d) for d in divisors(n)[1:]]), ]
    l[1:] # Indranil Ghosh, Jul 06 2017

Formula

a(1) = 1, a(n>1) = Sum_{d|n, d>1} binomial(a(n/d)+d-1, d).

A353867 Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Related concepts:
- A partition whose submultiset sums cover an initial interval is said to be complete (A126796, ranked by A325781).
- In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum.
- A complete partition that is also knapsack is said to be perfect (A002033, ranked by A325780).
- A partition whose partial runs have all different sums is said to be rucksack (A353864, ranked by A353866, complement A354583).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   32: {1,1,1,1,1}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  140: {1,1,3,4}
  176: {1,1,1,1,5}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Complete partitions are counted by A126796, ranked by A325781.
These partitions are counted by A353865.
This is a special case of A353866, counted by A353864, complement A354583.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]

A357875 Numbers whose run-sums of prime indices are weakly increasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 24 are (1,1,1,2), with run-sums (3,2), which are not weakly increasing, so 24 is not in the sequence.
		

Crossrefs

These partitions are counted by A304405.
These are the indices of rows in A354584 that are weakly increasing.
The complement is A357876.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],LessEqual@@Total/@Split[primeMS[#]]&]

A304405 Number of partitions of n in which the sequence of the sum of the same summands is nondecreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 52, 61, 80, 97, 127, 147, 189, 220, 277, 325, 402, 469, 578, 665, 804, 933, 1121, 1282, 1537, 1754, 2081, 2374, 2793, 3179, 3739, 4232, 4923, 5587, 6477, 7305, 8445, 9519, 10949, 12323, 14110, 15825, 18099, 20229, 23005
Offset: 0

Views

Author

Seiichi Manyama, May 12 2018

Keywords

Comments

Number of integer partitions of n with weakly decreasing run-sums, complement A357878. - Gus Wiseman, Oct 22 2022

Examples

			n |                      | Sequence of the sum of the same summands
--+----------------------+-----------------------------------------
1 | 1                    | 1
2 | 2                    | 2
  | 1+1                  | 2
3 | 3                    | 3
  | 2+1                  | 1, 2
  | 1+1+1                | 3
4 | 4                    | 4
  | 3+1                  | 1, 3
  | 2+2                  | 4
  | 2+1+1                | 2, 2
  | 1+1+1+1              | 4
5 | 5                    | 5
  | 4+1                  | 1, 4
  | 3+2                  | 2, 3
  | 3+1+1                | 2, 3
  | 2+2+1                | 1, 4
  | 1+1+1+1+1            | 5
6 | 6                    | 6
  | 5+1                  | 1, 5
  | 4+2                  | 2, 4
  | 4+1+1                | 2, 4
  | 3+3                  | 6
  | 3+2+1                | 1, 2, 3
  | 3+1+1+1              | 3, 3
  | 2+2+2                | 6
  | 2+2+1+1              | 2, 4
  | 1+1+1+1+1+1          | 6
		

Crossrefs

The strict opposite version is A304430, ranked by A357864.
The strict version is A304428, ranked by A357862.
The opposite version is A304406, ranked by A357861.
Number of rows in A354584 summing to n that are strictly increasing.
These partitions are ranked by A357875.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, distinct A353837.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Total/@Split[#]&]],{n,0,30}] (* Gus Wiseman, Oct 22 2022 *)

A353865 Number of complete rucksack partitions of n. Partitions whose weak run-sums are distinct and cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 3, 2, 4, 3, 3, 4, 4, 3, 4, 3, 4, 5, 5, 4, 6, 4, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 9, 6, 6, 7, 6, 8, 9, 6, 6, 8, 9, 7, 9, 9, 7, 10, 9, 8, 13, 7, 10, 11, 8, 9, 10, 11, 12, 9, 11, 9, 15, 12, 12, 19, 13, 16, 16
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). A weak run-sum is the sum of any consecutive constant subsequence.
Do all positive integers appear only finitely many times in this sequence?

Examples

			The a(n) compositions for n = 1, 3, 9, 15, 18:
  (1)  (21)   (4311)       (54321)            (543321)
       (111)  (51111)      (532221)           (654111)
              (111111111)  (651111)           (7611111)
                           (81111111)         (111111111111111111)
                           (111111111111111)
For example, the weak runs of y = {7,5,4,4,3,3,3,1,1} are {}, {1}, {1,1}, {3}, {4}, {5}, {3,3}, {7}, {4,4}, {3,3,3}, with sums 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are all distinct and cover an initial interval, so y is counted under a(31).
		

Crossrefs

Perfect partitions are counted by A002033, ranked by A325780.
Knapsack partitions are counted by A108917, ranked by A299702.
This is the complete case of A353864, ranked by A353866.
These partitions are ranked by A353867.
A000041 counts partitions, strict A000009.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353850 counts compositions with all distinct run-sums, ranked by A353852.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],norqQ[Total/@Select[msubs[#],SameQ@@#&]]&]],{n,0,15}]
  • PARI
    a(n) = my(c=0, s, v); if(n, forpart(p=n, if(p[1]==1, v=List([s=1]); for(i=2, #p, if(p[i]==p[i-1], listput(v, s+=p[i]), listput(v, s=p[i]))); s=#v; listsort(v, 1); if(s==#v&&s==v[s], c++))); c, 1); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A304428 Number of partitions of n in which the sequence of the sum of the same summands is increasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 11, 14, 20, 26, 33, 41, 50, 64, 81, 97, 120, 150, 176, 210, 255, 303, 362, 426, 503, 595, 703, 816, 953, 1113, 1283, 1482, 1721, 1988, 2299, 2650, 3031, 3464, 3965, 4492, 5115, 5820, 6592, 7467, 8484, 9568, 10822, 12185, 13724, 15445, 17381, 19475, 21855
Offset: 0

Views

Author

Seiichi Manyama, May 12 2018

Keywords

Comments

Number of integer partitions of n with strictly decreasing run-sums. - Gus Wiseman, Oct 21 2022

Examples

			n |                      | Sequence of the sum of the same summands
--+----------------------+-----------------------------------------
1 | 1                    | 1
2 | 2                    | 2
  | 1+1                  | 2
3 | 3                    | 3
  | 2+1                  | 1, 2
  | 1+1+1                | 3
4 | 4                    | 4
  | 3+1                  | 1, 3
  | 2+2                  | 4
  | 1+1+1+1              | 4
5 | 5                    | 5
  | 4+1                  | 1, 4
  | 3+2                  | 2, 3
  | 3+1+1                | 2, 3
  | 2+2+1                | 1, 4
  | 1+1+1+1+1            | 5
6 | 6                    | 6
  | 5+1                  | 1, 5
  | 4+2                  | 2, 4
  | 4+1+1                | 2, 4
  | 3+3                  | 6
  | 3+2+1                | 1, 2, 3
  | 2+2+2                | 6
  | 2+2+1+1              | 2, 4
  | 1+1+1+1+1+1          | 6
		

Crossrefs

The weak version is A304405, ranked by A357875.
The weak opposite version is A304406, ranked by A357861.
The opposite version is A304430, ranked by A357864.
Number of rows in A354584 summing to n that are strictly increasing.
These partitions are ranked by A357862, complement A357863.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, distinct A353837.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Total/@Split[#]&]],{n,0,30}] (* Gus Wiseman, Oct 21 2022 *)

Formula

a(n) <= A304405(n).

A304430 Number of partitions of n in which the sequence of the sum of the same summands is decreasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 10, 10, 13, 15, 18, 19, 22, 26, 33, 33, 38, 41, 50, 53, 60, 68, 77, 84, 94, 100, 116, 122, 136, 148, 172, 182, 206, 219, 246, 258, 281, 301, 341, 365, 397, 429, 466, 489, 528, 572, 623, 660, 728, 773, 849, 895, 968, 1019, 1120, 1188, 1288
Offset: 0

Views

Author

Seiichi Manyama, May 12 2018

Keywords

Comments

Number of integer partitions of n with strictly increasing run-sums. - Gus Wiseman, Oct 22 2022

Examples

			n |                      | Sequence of the sum of the same summands
--+----------------------+-----------------------------------------
1 | 1                    | 1
2 | 2                    | 2
  | 1+1                  | 2
3 | 3                    | 3
  | 1+1+1                | 3
4 | 4                    | 4
  | 2+2                  | 4
  | 1+1+1+1              | 4
5 | 5                    | 5
  | 2+1+1+1              | 3, 2
  | 1+1+1+1+1            | 5
6 | 6                    | 6
  | 3+3                  | 6
  | 2+2+2                | 6
  | 2+1+1+1+1            | 4, 2
  | 1+1+1+1+1+1          | 6
		

Crossrefs

The weak opposite version is A304405, ranked by A357875.
The weak version is A304406, ranked by A357861.
The opposite version is A304428, ranked by A357862.
Number of rows in A354584 summing to n that are strictly decreasing.
These partitions are ranked by A357864.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, distinct A353837.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Total/@Split[#]&]],{n,0,30}] (* Gus Wiseman, Oct 22 2022 *)

Formula

a(n) <= A304406(n).

A171979 Number of partitions of n such that smaller parts do not occur more frequently than greater parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 19, 21, 30, 31, 42, 50, 62, 69, 91, 99, 126, 144, 175, 198, 246, 275, 331, 379, 452, 509, 612, 686, 811, 922, 1076, 1219, 1428, 1604, 1863, 2108, 2434, 2739, 3162, 3551, 4075, 4593, 5240, 5885, 6721, 7527, 8556, 9597, 10870
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

A000009(n) <= a(n) <= A000041(n).
Equivalently, the number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the maximal part), as in the Mathematica program. - Clark Kimberling, Apr 04 2014
Also the number of integer partitions of n whose greatest part is a mode, meaning it appears at least as many times as each of the others. The name "Number of partitions of n such that smaller parts do not occur more frequently than greater parts" seems to describe A100882 = "Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing," which first differs from this at n = 10 due to the partition (3,3,2,1,1). - Gus Wiseman, May 07 2023

Examples

			a(5) = #{5, 4+1, 3+2, 2+2+1, 5x1} = 5;
a(6) = #{6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 6x1} = 8;
a(7) = #{7, 6+1, 5+2, 4+3, 4+2+1, 3+3+1, 2+2+2+1, 7x1} = 8;
a(8) = #{8, 7+1, 6+2, 5+3, 5+2+1, 4+4, 4+3+1, 3+3+2, 3+3+1+1, 2+2+2+2, 2+2+2+1+1, 8x1} = 12.
		

Crossrefs

For median instead of mode we have A053263.
The complement is counted by A240302.
The case where the maximum is the only mode is A362612.
A000041 counts integer partitions, strict A000009.
A362608 counts partitions with a unique mode, complement A362607.
A362611 counts modes in prime factorization.
A362614 counts partitions by number of modes.

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]]  (* maximal multiplicity *)
    Table[Count[f[n], p_ /; m[p] == Count[p, Max[p]]], {n, 0, z}] (* this sequence *)
    Table[Count[f[n], p_ /; m[p] > Count[p, Max[p]]], {n, 0, z}]  (* A240302 *)
    (* Clark Kimberling, Apr 04 2014 *)
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0],
         If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1,
         If[k == -1, j, If[k == 0, 0, If[j > k, 0, k]]]], {j, 1, n/i}]]];
    a[n_] := PartitionsP[n] - b[n, n, -1];
    a /@ Range[0, 70] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz in A240302 *)
    Table[Length[Select[IntegerPartitions[n],MemberQ[Commonest[#],Max[#]]&]],{n,0,30}] (* Gus Wiseman, May 07 2023 *)
  • PARI
    { my(N=53, x='x+O('x^N));
    my(gf=1+sum(i=1,N,sum(j=1,floor(N/i),x^(i*j)*prod(k=1,i-1,(1-x^(k*(j+1)))/(1-x^k)))));
    Vec(gf) } \\ John Tyler Rascoe, Mar 09 2024

Formula

a(n) = p(n,0,1,1) with p(n,i,j,k) = if k<=n then p(n-k,i,j+1,k) +p(n,max(i,j),1,k+1) else (if j0 then 0 else 1).
a(n) + A240302(n) = A000041(n). - Clark Kimberling, Apr 04 2014.
G.f.: 1 + Sum_{i, j>0} x^(i*j) * Product_{k=1..i-1} ((1 - x^(k*(j+1)))/(1 - x^k)). - John Tyler Rascoe, Mar 09 2024

A304464 Start with the normalized multiset of prime factors of n > 1. Given a multiset, take the multiset of its multiplicities. Repeat this until a multiset of size 1 is obtained. a(n) is the unique element of this multiset.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 2, 2, 5, 2, 6, 2, 2, 4, 7, 2, 8, 2, 2, 2, 9, 2, 2, 2, 3, 2, 10, 3, 11, 5, 2, 2, 2, 2, 12, 2, 2, 2, 13, 3, 14, 2, 2, 2, 15, 2, 2, 2, 2, 2, 16, 2, 2, 2, 2, 2, 17, 2, 18, 2, 2, 6, 2, 3, 19, 2, 2, 3, 20, 2, 21, 2, 2, 2, 2, 3, 22, 2, 4, 2, 23
Offset: 1

Author

Gus Wiseman, May 13 2018

Keywords

Comments

a(1) = 0 by convention.

Examples

			Starting with the normalized multiset of prime factors of 360, we obtain {1,1,1,2,2,3} -> {1,2,3} -> {1,1,1} -> {3}, so a(360) = 3.
		

Programs

  • Mathematica
    Table[If[n===1,0,NestWhile[Sort[Length/@Split[#]]&,If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],Length[#]>1&]//First],{n,100}]

Formula

a(prime(n)) = n.
a(p^n) = n where p is any prime number and n > 1.
a(product of n > 1 distinct primes) = n.

A319910 Number of distinct pairs (m, y), where m >= 1 and y is an integer partition of n, such that m can be obtained by iteratively adding or multiplying together parts of y until only one part (equal to m) remains.

Original entry on oeis.org

1, 3, 6, 11, 23, 48, 85, 178, 331, 619, 1176, 2183, 3876, 7013, 12447, 21719, 37628, 64570, 109723, 185055
Offset: 1

Author

Gus Wiseman, Oct 01 2018

Keywords

Examples

			The a(4) = 11 pairs:
  4 <= (4)
  3 <= (3,1)
  4 <= (3,1)
  4 <= (2,2)
  2 <= (2,1,1)
  3 <= (2,1,1)
  4 <= (2,1,1)
  1 <= (1,1,1,1)
  2 <= (1,1,1,1)
  3 <= (1,1,1,1)
  4 <= (1,1,1,1)
		

Programs

  • Mathematica
    ReplaceListRepeated[forms_,rerules_]:=Union[Flatten[FixedPointList[Function[pre,Union[Flatten[ReplaceList[#,rerules]&/@pre,1]]],forms],1]];
    nexos[ptn_]:=If[Length[ptn]==0,{0},Union@@Select[ReplaceListRepeated[{Sort[ptn]},{{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x+y]],{foe___,x_,mie___,y_,afe___}:>Sort[Append[{foe,mie,afe},x*y]]}],Length[#]==1&]];
    Table[Total[Length/@nexos/@IntegerPartitions[n]],{n,20}]
Previous Showing 41-50 of 100 results. Next