A276075 a(1) = 0, a(n) = (e1*i1! + e2*i2! + ... + ez*iz!) for n = prime(i1)^e1 * prime(i2)^e2 * ... * prime(iz)^ez, where prime(k) is the k-th prime, A000040(k).
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3180 (First 120 terms from Antti Karttunen).
Crossrefs
Programs
-
Mathematica
Array[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, 66] (* Michael De Vlieger, Dec 24 2017 *)
-
Python
from sympy import factorint, factorial as f, primepi def a(n): F=factorint(n) return 0 if n==1 else sum(F[i]*f(primepi(i)) for i in F) print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Jun 21 2017
Comments