cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A276075 a(1) = 0, a(n) = (e1*i1! + e2*i2! + ... + ez*iz!) for n = prime(i1)^e1 * prime(i2)^e2 * ... * prime(iz)^ez, where prime(k) is the k-th prime, A000040(k).

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 24, 3, 4, 7, 120, 4, 720, 25, 8, 4, 5040, 5, 40320, 8, 26, 121, 362880, 5, 12, 721, 6, 26, 3628800, 9, 39916800, 5, 122, 5041, 30, 6, 479001600, 40321, 722, 9, 6227020800, 27, 87178291200, 122, 10, 362881, 1307674368000, 6, 48, 13, 5042, 722, 20922789888000, 7, 126, 27, 40322, 3628801, 355687428096000, 10, 6402373705728000, 39916801, 28, 6, 726, 123
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

Additive with a(p^e) = e * (PrimePi(p)!), where PrimePi(n) = A000720(n).
a(3181) has 1001 decimal digits. - Michael De Vlieger, Dec 24 2017

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 0, Total[FactorInteger[#] /. {p_, e_} /; p > 1 :> e PrimePi[p]!]] &, 66] (* Michael De Vlieger, Dec 24 2017 *)
  • Python
    from sympy import factorint, factorial as f, primepi
    def a(n):
        F=factorint(n)
        return 0 if n==1 else sum(F[i]*f(primepi(i)) for i in F)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Jun 21 2017

Formula

a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A000142(A055396(n))).
Other identities.
For all n >= 0:
a(A276076(n)) = n.
a(A002110(n)) = A007489(n).
a(A019565(n)) = A059590(n).
a(A206296(n)) = A276080(n).
a(A260443(n)) = A276081(n).
For all n >= 1:
a(A000040(n)) = n! = A000142(n).
a(A076954(n-1)) = A033312(n).

A275734 Prime-factorization representations of "factorial base slope polynomials": a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).

Original entry on oeis.org

1, 2, 3, 6, 2, 4, 5, 10, 15, 30, 10, 20, 3, 6, 9, 18, 6, 12, 2, 4, 6, 12, 4, 8, 7, 14, 21, 42, 14, 28, 35, 70, 105, 210, 70, 140, 21, 42, 63, 126, 42, 84, 14, 28, 42, 84, 28, 56, 5, 10, 15, 30, 10, 20, 25, 50, 75, 150, 50, 100, 15, 30, 45, 90, 30, 60, 10, 20, 30, 60, 20, 40, 3, 6, 9, 18, 6, 12, 15, 30, 45, 90, 30, 60, 9, 18, 27
Offset: 0

Views

Author

Antti Karttunen, Aug 08 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of nonzero digits that occur on the slope (k-1) levels below the "maximal slope" in the factorial base representation of n. See A275811 for the definition of the "digit slopes" in this context.

Examples

			For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus a(23) = prime(1)^3 = 2^3 = 8.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus a(29) = prime(1)^2 * prime(4)^1 = 2*7 = 28.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus a(37) = prime(1) * prime(2) * prime(4) = 2*3*7 = 42.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus a(55) = prime(1)^1 * prime(3)^2 = 2*25 = 50.
		

Crossrefs

Cf. A275811.
Cf. A275804 (indices of squarefree terms), A275805 (of terms not squarefree).
Cf. also A275725, A275733, A275735, A276076 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

  • Python
    from operator import mul
    from sympy import prime, factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum(int(y[i])*f(i + 1) for i in range(len(y))) def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).
Other identities and observations. For all n >= 0:
a(n) = A275735(A225901(n)).
a(A007489(n)) = A002110(n).
A001221(a(n)) = A060502(n).
A001222(a(n)) = A060130(n).
A007814(a(n)) = A260736(n).
A051903(a(n)) = A275811(n).
A048675(a(n)) = A275728(n).
A248663(a(n)) = A275808(n).
A056169(a(n)) = A275946(n).
A056170(a(n)) = A275947(n).
A275812(a(n)) = A275962(n).

A275735 Prime-factorization representations of "factorial base level polynomials": a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 5, 10, 10, 20, 15, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 10, 20, 20, 40, 30, 60, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 15, 30, 30, 60, 45, 90, 5, 10, 10, 20, 15, 30, 10, 20, 20, 40, 30, 60, 15, 30, 30, 60, 45, 90, 25, 50, 50, 100, 75
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the factorial base representation of n. See the examples.

Examples

			For n = 0 whose factorial base representation (A007623) is also 0, there are no nonzero digits at all, thus there cannot be any prime present in the encoding, and a(0) = 1.
For n = 1 there is just one 1, thus a(1) = prime(1) = 2.
For n = 2 ("10"), there is just one 1-digit, thus a(2) = prime(1) = 2.
For n = 3 ("11") there are two 1-digits, thus a(3) = prime(1)^2 = 4.
For n = 18 ("300") there is just one 3, thus a(18) = prime(3) = 5.
For n = 19 ("301") there is one 1 and one 3, thus a(19) = prime(1)*prime(3) = 2*5 = 10.
For n = 141 ("10311") there are three 1's and one 3, thus a(141) = prime(1)^3 * prime(3) = 2^3 * 5^1 = 40.
		

Crossrefs

Cf. also A275725, A275733, A275734 for other such prime factorization encodings of A060117/A060118-related polynomials, and also A276076.
Differs from A227154 for the first time at n=18, where a(18) = 5, while A227154(18) = 4.

Programs

  • PARI
    A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A275735(n) = A181819(A276076(n)); \\ Antti Karttunen, Apr 03 2022
  • Python
    from sympy import prime
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n

Formula

a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).
Other identities and observations. For all n >= 0:
a(n) = A275734(A225901(n)).
A001221(a(n)) = A275806(n).
A001222(a(n)) = A060130(n).
A048675(a(n)) = A275729(n).
A051903(a(n)) = A264990(n).
A008683(a(A265349(n))) = -1 or +1 for all n >= 0.
A008683(a(A265350(n))) = 0 for all n >= 1.
From Antti Karttunen, Apr 03 2022: (Start)
A342001(a(n)) = A351954(n).
a(n) = A181819(A276076(n)). (End)

A257511 Number of 1's in factorial base representation of n (A007623).

Original entry on oeis.org

0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2015

Keywords

Crossrefs

Cf. A255411 (numbers n such that a(n) = 0), A255341 (such that a(n) = 1), A255342 (such that a(n) = 2), A255343 (such that a(n) = 3).
Positions of records: A007489.
Cf. also A257510.

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++]; m = n; len = i; dList = Table[0, {len}]; Do[currDigit = 0; While[m >= j!, m = m - j!; currDigit++]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; s = Table[FromDigits[factBaseIntDs@ n], {n, 0, 120}];
    First@ DigitCount[#] & /@ s (* Michael De Vlieger, Apr 27 2015, after Alonso del Arte at A007623 *)
    nn = 120; b = Module[{m = 1}, While[Factorial@ m < nn, m++]; MixedRadix[Reverse@ Range[2, m]]]; Table[Count[IntegerDigits[n, b], 1], {n, 0, nn}] (* Michael De Vlieger, Aug 29 2016, Version 10.2 *)
  • Scheme
    (define (A257511 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (floor->exact (/ n i)) (+ 1 i) (+ s (if (= 1 (modulo n i)) 1 0)))))))

Formula

a(0) = 0; for n >= 1, a(n) = A265333(n) + a(A257687(n)). - Antti Karttunen, Aug 29 2016
Other identities and observations. For all n >= 0:
a(n) = A260736(A225901(n)).
a(n) = A001221(A275732(n)) = A001222(A275732(n)).
a(n) = A007814(A275735(n)).
a(n) = A056169(A276076(n)).
a(A007489(n)) = n. [Particularly, A007489(n) gives the position where n first appears.]
a(n) <= A060130(n) <= A034968(n).

A054842 If n = a + 10 * b + 100 * c + 1000 * d + ... then a(n) = (2^a) * (3^b) * (5^c) * (7^d) * ...

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 27, 54, 108, 216, 432, 864, 1728, 3456, 6912, 13824, 81, 162, 324, 648, 1296, 2592, 5184, 10368, 20736, 41472, 243, 486, 972, 1944
Offset: 0

Views

Author

Henry Bottomley, Apr 11 2000

Keywords

Comments

a((10^k-1)/9) = Primorial(k)= A061509((10^k-1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k).) - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003
Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers. - Tom Edgar, Oct 20 2015

Examples

			a(15)=96 because 3^1 * 2^5 = 3*32 = 96.
		

Crossrefs

Cf. analogous sequences for other bases: A019565 (base 2), A101278 (base 3), A101942 (base 4), A101943 (base 5), A276076 (factorial base), A276086 (primorial base).

Programs

  • Haskell
    a054842 = f a000040_list 1 where
       f _      y 0 = y
       f (p:ps) y x = f ps (y * p ^ d) x'  where (x', d) = divMod x 10
    -- Reinhard Zumkeller, Aug 03 2015
    
  • Mathematica
    A054842[n_] := Times @@ (Prime[Range[Length[#], 1, -1]]^#) & [IntegerDigits[n]];
    Array[A054842, 100, 0] (* Paolo Xausa, Nov 25 2024 *)
  • PARI
    a(n)= my(d=Vecrev(digits(n))); factorback(primes(#d), d); \\ Ruud H.G. van Tol, Nov 28 2024

Formula

a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y. - Reinhard Zumkeller, Mar 13 2010

A047257 Numbers that are congruent to {4, 5} mod 6.

Original entry on oeis.org

4, 5, 10, 11, 16, 17, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 64, 65, 70, 71, 76, 77, 82, 83, 88, 89, 94, 95, 100, 101, 106, 107, 112, 113, 118, 119, 124, 125, 130, 131, 136, 137, 142, 143, 148, 149
Offset: 1

Views

Author

Keywords

Comments

Equivalently, numbers m such that 2^m - m is divisible by 3. Indeed, for every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 3. - Bernard Schott, Dec 10 2021
Numbers k for which A276076(k) and A276086(k) are multiples of nine. For a simple proof, consider the penultimate digit in the factorial and primorial base expansions of n, A007623 and A049345. - Antti Karttunen, Feb 08 2024

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Cf. A000325.
Similar with: A299174 (p = 2), this sequence (p = 3), A349767 (p = 5).

Programs

Formula

a(n) = 4 + 6*floor(n/2) + n mod 2.
a(n) = 6*n-a(n-1)-3, with a(1)=4. - Vincenzo Librandi, Aug 05 2010
G.f.: ( x*(4+x+x^2) ) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 3*n - (-1)^n. - Wesley Ivan Hurt, Mar 20 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. - Amiram Eldar, Dec 14 2021
E.g.f.: 1 + 3*x*exp(x) - exp(-x). - David Lovler, Aug 25 2022

A246359 Maximum digit in the factorial base expansion of n (A007623).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2014

Keywords

Comments

Maximum entry in n-th row of A108731.

Examples

			Factorial base representation of 46 is "1320" as 46 = 1*4! + 3*3! + 2*2! + 0*1!, and the largest of these digits is 3, thus a(46) = 3.
		

Crossrefs

Programs

  • Mathematica
    nn = 96; m = 1; While[Factorial@ m < nn, m++]; m; Table[Max@ IntegerDigits[n, MixedRadix[Reverse@ Range[2, m]]], {n, 0, nn}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; Table[Max@ f@ n, {n, 0, 96}] (* Michael De Vlieger, Aug 29 2016 *)
  • Python
    def a007623(n, p=2): return n if n

Formula

From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = 1 + a(A257684(n)).
a(0) = 0; for n >= 1, a(n) = max(A099563(n), a(A257687(n))).
a(n) = A051903(A276076(n)).
(End)

A276077 Number of distinct prime factors p of n such that p^(1+A000720(p)) is a divisor of n, where A000720(p) gives the index of prime p, 1 for 2, 2 for 3, 3 for 5, and so on.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Examples

			For n = 2 (= prime(1)), 2 is not divisible by 2^(1+1), thus a(2) = 0.
For n = 3 (= prime(3)), 3 is not divisible by 3^(2+1), thus a(3) = 0.
For n = 4 (= prime(1)^2), 4 is divisible by 2^(1+1), and there are no other prime factors apart from 2, thus a(4) = 1.
For n = 108 = 2^2 * 3^3, it is divisible both by 2^(1+1) and 3^(2+1), thus a(108) = 2.
For n = 625 = prime(3)^4, it is divisible by 5^(3+1), thus a(625) = 1.
		

Crossrefs

Cf. A276078 (positions of zeros), A276079 (nonzeros), also A276076.
Differs from A129251 for the first time at n=625, where a(625) = 1, while A129251(625) = 0.

Programs

  • Mathematica
    f[p_, e_] := If[PrimePi[p] < e, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 30 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i,1]) < f[i,2]);} \\ Amiram Eldar, Sep 30 2023
  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a028234(n):
        f=factorint(n)
        return 1 if n==1 else n//(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a049084(n): return primepi(n)*(isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a(n):
        if n==1: return 0
        val = a(a028234(n))
        if a067029(n) > a055396(n):
            val += 1
        return val
    print([a(n) for n in range(1, 201)]) # Indranil Ghosh, Jun 21 2017
    
  • Scheme
    (define (A276077 n) (if (= 1 n) 0 (+ (A276077 (A028234 n)) (if (> (A067029 n) (A055396 n)) 1 0))))
    

Formula

This formula uses Iverson bracket, which gives 1 as its value if the condition given inside [ ] is true and 0 otherwise:
a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) > A055396(n)].
Other identities. For all n >= 1:
a(A276076(n)) = 0.
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = 1 if primepi(p) < e, and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/prime(k)^(k+1) = 0.2886971166123417096098... . (End)

A277012 Factorial base representation of n is rewritten as a base-2 number with each nonzero digit k replaced by a run of k 1's (followed by one extra zero if not the rightmost run of 1's) and with each 0 kept as 0.

Original entry on oeis.org

0, 1, 2, 5, 6, 13, 4, 9, 10, 21, 22, 45, 12, 25, 26, 53, 54, 109, 28, 57, 58, 117, 118, 237, 8, 17, 18, 37, 38, 77, 20, 41, 42, 85, 86, 173, 44, 89, 90, 181, 182, 365, 92, 185, 186, 373, 374, 749, 24, 49, 50, 101, 102, 205, 52, 105, 106, 213, 214, 429, 108, 217, 218, 437, 438, 877, 220, 441, 442, 885, 886, 1773, 56, 113, 114, 229, 230, 461, 116, 233
Offset: 0

Views

Author

Antti Karttunen, Sep 25 2016

Keywords

Examples

			9 = "111" in factorial base (3! + 2! + 1! = 9) is converted to three 1-bits with separating zeros between, in binary as "10101" = A007088(21), thus a(9) = 21.
91 = "3301" in factorial base (91 = 3*4! + 3*3! + 1!) is converted to binary number "1110111001" = A007088(953), thus a(91) = 953. Between the rightmost 1-runs the other zero comes from the factorial base representation, while the other zero is an extra separating zero inserted after each run of 1-bits apart from the rightmost 1-run. The single zero between the two leftmost 1-runs is similarly used to separate the two "unary representations" of 3's.
		

Crossrefs

Cf. A277008 (terms sorted into ascending order).
Cf. A277011 (a left inverse).
Differs from analogous A277022 for the first time at n=24, where a(24) = 8, while A277022(24) = 60.

Programs

  • Scheme
    (define (A277012 n) (let loop ((n n) (z 0) (i 2) (j 0)) (if (zero? n) z (let ((d (remainder n i))) (loop (quotient n i) (+ z (* (A000225 d) (A000079 j))) (+ 1 i) (+ 1 j d))))))

Formula

a(n) = A156552(A276076(n)).
Other identities. For all n >= 0:
A277011(a(n)) = n.
A005940(1+a(n)) = A276076(n).
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A000120(a(n)) = A034968(n).
A069010(a(n)) = A060130(n).
A227349(a(n)) = A227153(n).

A351576 Factorial base expansion of n reinterpreted as a primorial base expansion, then converted back to decimal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 0

Views

Author

Antti Karttunen, Apr 01 2022

Keywords

Examples

			n = 313 has factorial base representation (see A007623) "23001" because 2*5! + 3*4! + 1*1! = 240+72+1 = 313. When this is reinterpreted as a primorial base expansion (see A049345), we obtain 2*A002110(4) + 3*A002110(3) + 1*A002110(0) = 511, therefore a(313) = 511.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; FromDigits[Reverse[s], MixedRadix[Reverse@ Prime@ Range@ Length[s]]]]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A351576(n) = A276085(A276076(n));

Formula

a(n) = A276085(A276076(n)).
Previous Showing 21-30 of 42 results. Next