cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A372850 Numbers whose distinct prime indices are the binary indices of some prime number.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 30, 36, 40, 42, 44, 46, 48, 50, 54, 60, 66, 70, 72, 80, 81, 84, 88, 90, 92, 96, 100, 102, 108, 114, 118, 120, 126, 130, 132, 140, 144, 150, 160, 162, 168, 176, 180, 182, 184, 192, 198, 200, 204, 216, 228, 236, 238, 240, 242
Offset: 1

Views

Author

Gus Wiseman, May 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The distinct prime indices of 45 are {2,3}, which are the binary indices of 6, which is not prime, so 45 is not in the sequence.
The distinct prime indices of 60 are {1,2,3}, which are the binary indices of 7, which is prime, so 60 is in the sequence.
The terms together with their prime indices begin:
    3: {2}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   46: {1,9}
   48: {1,1,1,1,2}
   50: {1,3,3}
   54: {1,2,2,2}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
		

Crossrefs

For even instead of prime we have A005408, with multiplicity A003159.
For odd instead of prime we have A005843, with multiplicity A036554.
For prime indices with multiplicity we have A277319, counted by A372688.
The squarefree case is A372851, counted by A372687.
Partitions of this type are counted by A372887.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A038499 counts partitions of prime length, strict A085756.
A048793 and A272020 (reverse) list binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
A058698 counts partitions of prime numbers, strict A064688.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeQ[Total[2^(Union[prix[#]]-1)]]&]

Formula

Numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the distinct prime indices of k.

A372851 Squarefree numbers whose prime indices are the binary indices of some prime number.

Original entry on oeis.org

3, 6, 10, 22, 30, 42, 46, 66, 70, 102, 114, 118, 130, 182, 238, 246, 266, 318, 330, 354, 370, 402, 406, 434, 442, 510, 546, 646, 654, 690, 762, 770, 798, 930, 938, 946, 962, 986, 1066, 1102, 1122, 1178, 1218, 1222, 1246, 1258, 1334, 1378, 1430, 1482, 1578
Offset: 1

Views

Author

Gus Wiseman, May 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Note the function taking a set s to its rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The prime indices of 70 are {1,3,4}, which are the binary indices of 13, which is prime, so 70 is in the sequence.
The prime indices of 15 are {2,3}, which are the binary indices of 6, which is not prime, so 15 is not in the sequence.
The terms together with their prime indices begin:
    3: {2}
    6: {1,2}
   10: {1,3}
   22: {1,5}
   30: {1,2,3}
   42: {1,2,4}
   46: {1,9}
   66: {1,2,5}
   70: {1,3,4}
  102: {1,2,7}
  114: {1,2,8}
  118: {1,17}
  130: {1,3,6}
  182: {1,4,6}
  238: {1,4,7}
  246: {1,2,13}
  266: {1,4,8}
  318: {1,2,16}
  330: {1,2,3,5}
  354: {1,2,17}
  370: {1,3,12}
  402: {1,2,19}
		

Crossrefs

[Warning: do not confuse A372887 with the strict case A372687.]
For odd instead of prime we have A039956.
For even instead of prime we have A056911.
Strict partitions of this type are counted by A372687.
Non-strict partitions of this type are counted by A372688, ranks A277319.
The nonsquarefree version is A372850, counted by A372887.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A038499 counts partitions of prime length, strict A085756.
A048793 and A272020 (reverse) list binary indices:
- length A000120
- min A001511
- sum A029931
- max A070939
A058698 counts partitions of prime numbers, strict A064688.
A372885 lists primes whose binary indices sum to a prime, indices A372886.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#] && PrimeQ[Total[2^(PrimePi/@First/@FactorInteger[#]-1)]]&]

Formula

Squarefree numbers k such that Sum_{i:prime(i)|k} 2^(i-1) is prime, where the sum is over the (distinct) prime indices of k.

A277316 Prime-factorization representation of the prime-th Stern-polynomial: a(n) = A260443(A000040(n)).

Original entry on oeis.org

3, 6, 18, 30, 270, 450, 630, 6750, 9450, 22050, 2310, 3543750, 4961250, 53156250, 727650, 173643750, 25467750, 2668050, 40020750, 891371250, 9550406250, 1400726250, 3190703906250, 467969906250, 173423250, 16378946718750, 1715889656250, 245684200781250, 25738344843750, 8497739250, 510510, 6763506750, 66919696593750
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

If the conjecture by Ulas and Ulas is true, then all these terms can be found from A206284 and then this is also a subsequence of A277318.

Crossrefs

Cf. A277317 (same sequence sorted into ascending order) is a subsequence of A277319.
Differs from A277318 for the first time at n=10, where A277318(10) = 15750, a term which is missing from this sequence.

Programs

Formula

a(n) = A260443(A000040(n)).
Other identities.
For all n >= 1, a(A059305(n)) = A002110(A000043(n)).

A277317 Numbers k such that A277333(k) is a prime.

Original entry on oeis.org

3, 6, 18, 30, 270, 450, 630, 2310, 6750, 9450, 22050, 510510, 727650, 2668050, 3543750, 4961250, 25467750, 29099070
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

Sequence A277316 sorted into ascending order. See comments in that entry.
Terms k present in A277319 for which A260443(A048675(k)) = k. - David A. Corneth and Antti Karttunen, Oct 13 2016

Crossrefs

Cf. A277316.
Intersection of A260442 and A277319.
Also, after the initial term, the intersection of A277200 and A277319.

Programs

A372887 Number of integer partitions of n whose distinct parts are the binary indices of some prime number.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 8, 12, 14, 21, 29, 36, 48, 56, 74, 94, 123, 144, 195, 235, 301, 356, 456, 538, 679, 803, 997, 1189, 1467, 1716, 2103, 2488, 2968, 3517, 4185, 4907, 5834, 6850, 8032, 9459, 11073, 12933, 15130, 17652, 20480, 24011, 27851, 32344, 37520
Offset: 0

Views

Author

Gus Wiseman, May 19 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Note the inverse of A048793 (binary indices) takes a set s to Sum_i 2^(s_i-1).

Examples

			The partition y = (4,3,1,1) has distinct parts {1,3,4}, which are the binary indices of 13, which is prime, so y is counted under a(9).
The a(2) = 1 through a(9) = 14 partitions:
  (2)  (21)  (22)   (221)   (51)     (331)     (431)      (3321)
             (31)   (311)   (222)    (421)     (521)      (4221)
             (211)  (2111)  (321)    (511)     (2222)     (4311)
                            (2211)   (2221)    (3221)     (5211)
                            (3111)   (3211)    (3311)     (22221)
                            (21111)  (22111)   (4211)     (32211)
                                     (31111)   (5111)     (33111)
                                     (211111)  (22211)    (42111)
                                               (32111)    (51111)
                                               (221111)   (222111)
                                               (311111)   (321111)
                                               (2111111)  (2211111)
                                                          (3111111)
                                                          (21111111)
		

Crossrefs

For odd instead of prime we have A000041, even A002865.
The strict case is A372687, ranks A372851.
Counting not just distinct parts gives A372688, ranks A277319.
These partitions have Heinz numbers A372850.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A058698 counts partitions of prime numbers, strict A064688.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices A372886.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^(Union[#]-1)]]&]],{n,0,30}]

A277321 Primes in A048675, in the order of appearance and with duplicates.

Original entry on oeis.org

2, 2, 3, 3, 5, 5, 17, 5, 7, 5, 7, 11, 257, 7, 11, 19, 13, 7, 19, 7, 17, 67, 131, 65537, 13, 7, 37, 67, 11, 131, 13, 41, 11, 13, 37, 73, 4099, 13, 137, 11, 19, 37, 32771, 4099, 23, 17, 65539, 11, 2053, 19, 262147, 521, 37, 32771, 1033, 23, 97, 13, 65539, 11, 11, 71, 262147, 43, 23, 13, 17, 11, 193, 11, 41, 268435459, 2053, 71
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2016

Keywords

Comments

Each prime number occurs in this sequence, but only for a finite number of times.

Crossrefs

Formula

a(n) = A048675(A277319(n)).
Previous Showing 11-16 of 16 results.