cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A170791 a(n) = n^9*(n^9 + 1)/2.

Original entry on oeis.org

0, 1, 131328, 193720086, 34359869440, 1907349609375, 50779983373056, 814206819132028, 9007199321849856, 75047317842209805, 500000000500000000, 2779958657925089586, 13311666643022512128, 56227703481280946251
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 18 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=131328, there are 2^18=262144 oriented arrangements of two colors. Of these, 2^9=512 are achiral. That leaves (262144-512)/2=130816 chiral pairs. Adding achiral and chiral, we get 131328. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 18 of A277504.
Cf. A010806 (oriented), A001017 (achiral).

Programs

  • GAP
    List([0..30], n -> n^9*(n^9 + 1)/2); # G. C. Greubel, Nov 15 2018
    
  • Magma
    [n^9*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
    
  • Mathematica
    f[n_]:=Module[{n9=n^9},(n9(n9+1))/2]; Array[f,20,0] (* Harvey P. Dale, Nov 24 2012 *)
    Table[n^9*(n^9+1)/2, {n,0,30}] (* G. C. Greubel, Dec 06 2017 *)
  • PARI
    for(n=0,30, print1(n^9*(n^9+1)/2, ", ")) \\ G. C. Greubel, Dec 06 2017
    
  • Python
    for n in range(0,20): print(int(n**9*(n**9 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
  • Sage
    [n^9*(1 + n^9)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

G.f.: (x + 131309*x^2 + 191225025*x^3 + 30701643925*x^4 + 1287510971765*x^5 + 20228672721537*x^6 + 142998536758213*x^7 + 503354983579865*x^8 + 932692830330915*x^9 + 932692827449735*x^10 + 503354984335363*x^11 + 142998537549087*x^12 + 20228672026535*x^13 + 1287511125835*x^14 + 30701669175*x^15 + 191214899*x^16 + 130816*x^17) /(1-x)^19. - G. C. Greubel, Dec 06 2017
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010806(n) + A001017(n)) / 2 = (n^18 + n^9) / 2.
G.f.: (Sum_{j=1..18} S2(18,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..9} S2(9,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..17} A145882(18,k) * x^k / (1-x)^19.
E.g.f.: (Sum_{k=1..18} S2(18,k)*x^k + Sum_{k=1..9} S2(9,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>18, a(n) = Sum_{j=1..19} -binomial(j-20,j) * a(n-j). (End)

A284979 Array a(m, n) giving the number of reversible strings with n beads of m colors, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 6, 6, 4, 1, 10, 18, 10, 5, 1, 20, 45, 40, 15, 6, 1, 36, 135, 136, 75, 21, 7, 1, 72, 378, 544, 325, 126, 28, 8, 1, 136, 1134, 2080, 1625, 666, 196, 36, 9, 1, 272, 3321, 8320, 7875, 3996, 1225, 288, 45, 10
Offset: 1

Views

Author

Andrew Howroyd, Apr 06 2017

Keywords

Comments

See A277504 for additional information.

Examples

			Array begins:
1  1   1    1     1      1       1        1         1 ...
2  3   6   10    20     36      72      136       272 ...
3  6  18   45   135    378    1134     3321      9963 ...
4 10  40  136   544   2080    8320    32896    131584 ...
5 15  75  325  1625   7875   39375   195625    978125 ...
6 21 126  666  3996  23436  140616   840456   5042736 ...
7 28 196 1225  8575  58996  412972  2883601  20185207 ...
8 36 288 2080 16640 131328 1050624  8390656  67125248 ...
9 45 405 3321 29889 266085 2394765 21526641 193739769 ...
...
		

Crossrefs

Transpose of A277504.

Programs

  • Mathematica
    a[n_, k_] :=  (k^n + k^((n + Mod[n, 2])/2))/2; Table[a[k - n + 1, n], {k, 1, 10}, {n, 1, k}] // Flatten (* Jean-François Alcover, Oct 01 2017 *)

Formula

a(m, n) = (m^n + m^((n + mod(n,2))/2))/2.
Previous Showing 31-32 of 32 results.