cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A278222 The least number with the same prime signature as A005940(n+1).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 4, 8, 2, 6, 6, 12, 4, 12, 8, 16, 2, 6, 6, 12, 6, 30, 12, 24, 4, 12, 12, 36, 8, 24, 16, 32, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 4, 12, 12, 36, 12, 60, 36, 72, 8, 24, 24, 72, 16, 48, 32, 64, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 6, 30, 30, 60, 30, 210, 60, 120, 12, 60, 60, 180, 24, 120, 48, 96, 4, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Nov 15 2016

Keywords

Comments

This sequence can be used for filtering certain base-2 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A005940(n+1)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Because the Doudna map n -> A005940(1+n) is an isomorphism from "unary-binary encoding of factorization" (see A156552) to the ordinary representation of the prime factorization of n, it follows that the equivalence classes of this sequence match with any such sequence b, where b(n) is computed from the lengths of 1-runs in the binary representation of n and the order of those 1-runs does not matter. Particularly, this holds for any sequence that is obtained as a "Run Length Transform", i.e., where b(n) = Product S(i), for some function S, where i runs through the lengths of runs of 1's in the binary expansion of n. See for example A227349.
However, this sequence itself is not a run length transform of any sequence (which can be seen for example from the fact that A046523 is not multiplicative).
Furthermore, this matches not only with sequences involving products of S(i), but with any sequence obtained with any commutative function applied cumulatively, like e.g., A000120 (binary weight, obtained in this case as Sum identity(i)), and A069010 (number of runs of 1's in binary representation of n, obtained as Sum signum(i)).

Crossrefs

Similar sequences: A278217, A278219 (other base-2 related variants), A069877 (base-10 related), A278226 (primorial base), A278234-A278236 (factorial base), A278243 (Stern polynomials), A278233 (factorization in ring GF(2)[X]), A046523 (factorization in Z).
Cf. also A286622 (rgs-transform of this sequence) and A286162, A286252, A286163, A286240, A286242, A286379, A286464, A286374, A286375, A286376, A286243, A286553 (various other sequences involving this sequence).
Sequences that partition N into same or coarser equivalence classes: too many to list all here (over a hundred). At least every sequence listed under index-entry "Run Length Transforms" is included (e.g., A227349, A246660, A278159), and also sequences like A000120 and A069010, and their combinations like A136277.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Array[If[# == 1, 1, Times @@ MapIndexed[ Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]]] &@ f[# - 1, 1, 1] &, 99] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[, 2], , 4)), n)
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); A046523(t) \\ Charles R Greathouse IV, Nov 11 2021
  • Python
    from sympy import prime, factorint
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return a046523(a005940(n + 1)) # Indranil Ghosh, May 05 2017
    
  • Scheme
    (define (A278222 n) (A046523 (A005940 (+ 1 n))))
    

Formula

a(n) = A046523(A005940(1+n)).
a(n) = A124859(A278159(n)).
a(n) = A278219(A006068(n)).

Extensions

Misleading part of the name removed by Antti Karttunen, Apr 07 2022

A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Comments

The sum of digits of n in primorial base is odd if n is 1 or 2 (mod 4) and even if n is 0 or 3 (mod 4). Proof: primorials are 1 or 2 (mod 4) and a(n) can be constructed via the greedy algorithm. So if n = 4k + r where 0 <= r < 4, 4k needs an even number of primorials and r needs hammingweight(r) = A000120(r) primorials. Q.E.D. - David A. Corneth, Feb 27 2019

Examples

			For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
		

Crossrefs

Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Cf. A014601, A042963 (positions of even and odd terms), A343048 (positions of records).
Differs from analogous A034968 for the first time at n=24.

Programs

  • Mathematica
    nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *)
    nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
  • Python
    from sympy import prime, primefactors
    def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1
    def a276086(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m
    def a(n): return Omega(a276086(n))
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(n) = 1 + a(A276151(n)) = 1 + a(n-A002110(A276084(n))), a(0) = 0.
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
a(n) = A001222(A276086(n)) = A001222(A278226(n)).
a(n) >= A371091(n) >= A267263(n).
From Antti Karttunen, Feb 27 2019: (Start)
a(n) = A000120(A277022(n)).
a(A283477(n)) = A324342(n).
(End)
a(n) = A373606(n) + A373607(n). - Antti Karttunen, Jun 19 2024

A278233 Filter-sequence for GF(2)[X]-factorization: sequence that gives the least natural number with the same prime signature that (0, 1)-polynomial encoded in the binary expansion of n has when it is factored over GF(2).

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 2, 8, 6, 12, 2, 12, 2, 6, 8, 16, 16, 30, 2, 36, 4, 6, 6, 24, 2, 6, 12, 12, 6, 24, 2, 32, 6, 48, 6, 60, 2, 6, 12, 72, 2, 12, 6, 12, 24, 30, 2, 48, 6, 6, 32, 12, 6, 60, 2, 24, 12, 30, 2, 72, 2, 6, 12, 64, 36, 30, 2, 144, 4, 30, 6, 120, 2, 6, 24, 12, 6, 60, 6, 144, 4, 6, 30, 36, 64, 30, 2, 24, 6, 120, 2, 60, 6, 6, 12, 96, 2, 30, 12, 12, 30, 96, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

a(n) = the least number with the same prime signature as A091203(n).
This sequence works as an A046523-analog in the polynomial ring GF(2)[X] and can be used as a filter which matches with (and thus detects) any sequence in the database where a(n) depends only on the exponents of irreducible factors when the polynomial corresponding to n (via base-2 encoding) is factored over GF(2). These sequences are listed in the Crossrefs section, "Sequences that partition N into ...".
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Examples

			3 is "11" in binary, encodes polynomial x + 1, and 7 is "111" in binary, encodes polynomial x^2 + x + 1, both which are irreducible over GF(2). We can multiply their codes with carryless multiplication A048720 as A048720(3,7) = 9, A048720(9,3) = 27, A048720(9,7) = 63. Now a(27) = a(63) because the exponents occurring in both codes 27 and 63 are one 1 and two 2's, and their order is not significant when computing prime signature. Moreover a(27) = a(63) = 12 because that is the least number with a prime signature (1,2) in the more familiar domain of natural numbers.
a(25) = 2, because 25 is "11001" in binary, encoding polynomial x^4 + x^3 + 1, which is irreducible in the ring GF(2)[X], i.e., 25 is in A014580, whose initial term is 2.
		

Crossrefs

Cf. A014580 (gives the positions of 2's), A048720, A057889, A091203, A091205, A193231, A235042, A278231, A278238, A278239.
Similar filtering sequences: A046523, A278222, A278226, A278236, A278243.
Sequences that partition N into same or coarser equivalence classes: A091220, A091221, A091222, A106493, A106494.
Cf. also A304529, A304751, A305788 (rgs-transform), A305789.

Programs

Formula

a(n) = A046523(A091203(n)) = A046523(A091205(n)) = A046523(A235042(n)). [Because of the "sorting" essentially performed by A046523, any map from GF(2)[X] to Z can be used, as long as it is fully (cross-)multiplicative and preserves also the exponents intact.]
Other identities. For all n >= 1:
a(A014580(n)) = 2.
a(n) = a(A057889(n)) = a(A193231(n)).
a(A000695(n)) = A278238(n).
a(A277699(n)) = A278239(n).

A278243 Filter-sequence for Stern polynomials: Least number with the same prime signature as A260443(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 12, 6, 30, 2, 60, 12, 120, 6, 180, 30, 210, 2, 420, 60, 1080, 12, 2160, 120, 2520, 6, 2520, 180, 7560, 30, 6300, 210, 2310, 2, 4620, 420, 37800, 60, 90720, 1080, 75600, 12, 226800, 2160, 544320, 120, 453600, 2520, 138600, 6, 138600, 2520, 756000, 180, 2268000, 7560, 831600, 30, 415800, 6300, 2079000, 210, 485100, 2310, 30030, 2, 60060, 4620
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain Stern polynomial (see A125184, A260443) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A260443(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Some of these are listed on the last line ("Sequences that partition N into ...") of Crossrefs section.

Crossrefs

Sequences that partition or seem to partition N into same or coarser equivalence classes: A002487, A126606, A277314, A277315, A277325, A277326, A277700, A277705.
The following are less certain: A007302 (not proved, but the first 10000 terms match), A072453, A110955 (uncertain, but related to A007302), A218799, A218800.
Note that the base-2 related sequences A069010 and A277561 (= 2^A069010(n)) do not match, although at first it seems so, up to for at least 139 initial terms. Also A028928 belongs to a different family.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]] - Boole[# == 1] &@ a@ n, {n, 0, 66}] (* Michael De Vlieger, May 12 2017 *)
  • Scheme
    (define (A278243 n) (A046523 (A260443 n)))

Formula

a(n) = A046523(A260443(n)).

A278236 Filter-sequence for factorial base (digit values): least number with the same prime signature as A276076(n).

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 2, 6, 6, 30, 12, 60, 4, 12, 12, 60, 36, 180, 8, 24, 24, 120, 72, 360, 2, 6, 6, 30, 12, 60, 6, 30, 30, 210, 60, 420, 12, 60, 60, 420, 180, 1260, 24, 120, 120, 840, 360, 2520, 4, 12, 12, 60, 36, 180, 12, 60, 60, 420, 180, 1260, 36, 180, 180, 1260, 900, 6300, 72, 360, 360, 2520, 1800, 12600, 8, 24, 24, 120, 72, 360, 24, 120, 120, 840, 360, 2520
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A276076(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero digits (that may also be > 9) in the factorial base representation of n, but does not depend on their order. Some of these are listed on the last line of the Crossrefs section.
Note that as A275735 is present in that list it means that the sequences matching to its filter-sequence A278235 form a subset of the sequences matching to this sequence. Also, for A275735 there is a stronger condition that for any i, j: a(i) = a(j) <=> A275735(i) = A275735(j), which if true, would imply that there is an injective function f such that f(A275735(n)) = A278236(n), and indeed, this function seems to be A181821.

Crossrefs

Similar sequences: A278222 (base-2 related), A069877 (base-10), A278226 (primorial base), A278225, A278234, A278235 (other variants for factorial base),
Differs from A278226 for the first time at n=24, where a(24)=2, while A278226(24)=16.
Sequences that partition N into same or coarser equivalence classes: A275735 (<=>), A034968, A060130, A227153, A227154, A246359, A257079, A257511, A257679, A257694, A257695, A257696, A264990, A275729, A275806, A275948, A275964, A278235.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; s = ReverseSort[s]; Times @@ (Prime[Range[Length[s]]] ^ s)]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • Scheme
    (define (A278236 n) (A046523 (A276076 n)))

Formula

a(n) = A046523(A276076(n)).
a(n) = A181821(A275735(n)). [Empirical formula found with the help of equivalence class matching. Not yet proved.]

A329045 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(A329044(i)) = A046523(A329044(j)) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 4, 3, 2, 5, 2, 3, 6, 7, 2, 7, 2, 5, 6, 3, 2, 8, 9, 3, 4, 5, 2, 10, 2, 4, 6, 3, 11, 12, 2, 3, 6, 4, 2, 4, 2, 5, 10, 3, 2, 8, 13, 14, 6, 5, 2, 7, 9, 15, 6, 3, 2, 16, 2, 3, 16, 7, 17, 18, 2, 5, 6, 19, 2, 20, 2, 3, 21, 5, 22, 18, 2, 7, 13, 3, 2, 7, 23, 3, 6, 15, 2, 24, 25, 5, 6, 3, 26, 27, 2, 28, 24, 13, 2, 18, 2, 15, 29
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2019

Keywords

Comments

Restricted growth sequence transform of function f(n) = A046523(A329044(n)).
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A324888(i) = A324888(j),
a(i) = a(j) => A329046(i) = A329046(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A329044(n) = A064989(A324886(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    v329045 = rgs_transform(vector(up_to, n, A046523(A329044(n))));
    A329045(n) = v329045[n];

A328835 Prime shadow of primorial base exp-function: a(n) = A181819(A276086(n)).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 5, 10, 10, 20, 15, 30, 7, 14, 14, 28, 21, 42, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 10, 20, 20, 40, 30, 60, 14, 28, 28, 56, 42, 84, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 15, 30, 30, 60, 45, 90, 21, 42, 42, 84, 63, 126, 5, 10, 10, 20, 15, 30, 10, 20, 20
Offset: 0

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

From Antti Karttunen, Apr 30 2022: (Start)
These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the primorial base representation of n.
Note that this sequence, and all the sequences derived from it as b(n) = f(a(n)), [where f is any integer-valued function] can be represented as b(n) = g(A278226(n)), where g(n) = f(A181819(n)). E.g., if f is the identity function (so that b(n) is this sequence), then g(n) is A181819(n). See the comment and formulas in the latter sequence.
(End)

Crossrefs

Programs

  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328835(n) = A181819(A276086(n));

Formula

a(n) = A181819(A276086(n)).
A001222(a(n)) = A267263(n).
A007814(a(n)) = A328614(n).
A061395(a(n)) = A328114(n).
For all n >= 0, a(n) = A181819(A278226(n)) and A181821(a(n)) = A278226(n). - Antti Karttunen, Apr 30 2022

A317836 Number of partitions of n with carry-free sum in primorial base.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 1, 2, 2, 5, 4, 11, 2, 4, 4, 11, 9, 26, 3, 7, 7, 21, 16, 52, 5, 12, 12, 38, 29, 98, 1, 2, 2, 5, 4, 11, 2, 5, 5, 15, 11, 36, 4, 11, 11, 36, 26, 92, 7, 21, 21, 74, 52, 198, 12, 38, 38, 141, 98, 392, 2, 4, 4, 11, 9, 26, 4, 11, 11, 36, 26, 92, 9, 26, 26, 92, 66, 249, 16, 52, 52, 198, 137, 560, 29, 98, 98, 392, 269, 1150, 3, 7
Offset: 0

Views

Author

Antti Karttunen, Aug 08 2018

Keywords

Comments

"Carry-free sum" in this context means that when the digits of summands (written in primorial base, see A049345) are lined up (right-justified), then summing up of each column will not result in carries to any columns left of that column, that is, the sum of digits of the k-th column from the right (with the rightmost as column 1) over all the summands is the same as the k-th digit in n, thus at most prime(k)-1. Among other things, this implies that in any solution, at most one of the summands may be odd. Moreover, such an odd summand is present if and only if n is odd.

Examples

			For n=24, A049345(24) = "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0). This can be partitioned in carry-free way either as "100" + "100" + "100" + "100" {6+6+6+6}, "200" + "100" + "100" {12+6+6}, "200" + "200" {12+12}, "300" + "100" {18+6}, or "400" {24}, thus a(24) = 5.
For n=0..23, A049345(n) = A007623(n), thus a(n) = A317826(n) in the same range. See the examples in the latter sequence for how the values for n=0..5 are formed.
		

Crossrefs

Programs

  • PARI
    fcnt(n, m) = {local(s); s=0; if(n == 1, s=1, fordiv(n, d, if(d > 1 & d <= m, s=s+fcnt(n/d, d)))); s};
    A001055(n) = fcnt(n, n); \\ From A001055
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A317836(n) = A001055(A276086(n));
    
  • PARI
    \\ Slightly faster, memoized implementation:
    memA001055 = Map();
    A001055(n) = {my(v); if(mapisdefined(memA001055,n), v = mapget(memA001055,n), v = fcnt(n, n); mapput(memA001055,n,v); (v));}; \\ Cached version.
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A317836(n) = A001055(A046523(A276086(n)));

Formula

a(n) = A001055(A276086(n)) = A001055(A278226(n)).

A069877 Smallest number with a prime signature whose indices are the decimal digits of n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 4, 12, 36, 72, 144, 288, 576, 1152, 2304, 4608, 8, 24, 72, 216, 432, 864, 1728, 3456, 6912, 13824, 16, 48, 144, 432, 1296, 2592, 5184, 10368, 20736, 41472, 32, 96, 288, 864, 2592, 7776, 15552, 31104, 62208, 124416, 64, 192, 576, 1728, 5184, 15552, 46656, 93312, 186624, 373248, 128
Offset: 0

Views

Author

Amarnath Murthy, Apr 25 2002

Keywords

Comments

From Antti Karttunen, Nov 17 2016: (Start)
This is a filter-sequence for decimal base: a(n) = the least number with the same prime signature as A054842(n).
This sequence can be used for filtering certain base-10 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A054842(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero decimal digits of n, but does not depend on their order. These include for example, A007953 (digital sum and any of its variants), A010888 (digital root of n) and A051801 (product of the nonzero digits of n). As of Nov 11 2016, there were a couple of hundred such sequences that seemed to match with this one. These are given at the "List of sequences whose equivalence classes ..." link.
(End)

Examples

			a(12) = 2^2 * 3^1 = 12. a(231) = 2^3 * 3^2 * 5^1 = 360.
		

Crossrefs

Cf. A278222, A278226, A278236 for similar filter sequences constructed for other bases.
Sequences that partition N into same or coarser equivalence classes: too numerous to list all here, but at least A007953, A010888, A051801 are included. See the separate list given in links.

Formula

a(n) = A046523(A054842(n)). - Antti Karttunen, Nov 16 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 05 2002
a(0)=1 prepended and more terms added by Antti Karttunen, Nov 16 2016
Previous Showing 11-20 of 28 results. Next