cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A278993 Number of simple chord diagrams with n chords, up to rotation.

Original entry on oeis.org

0, 1, 1, 4, 21, 176, 1893, 25030, 382272, 6604535, 127222636, 2702798537, 62778105236, 1582725739329, 43046433007765, 1256332883208474, 39165907107963273, 1298945495674093932, 45666536827274985585, 1696460750775267473762
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

A278994 Number of simple chord diagrams with n chords, modulo all symmetries.

Original entry on oeis.org

0, 1, 1, 4, 18, 116, 1060, 13019, 193425, 3313522, 63667788, 1351700744, 31390695708, 791372281393, 21523271532811, 628166776833181, 19582955637428422, 649472761243051940, 22833268501579122332, 848230375982060558217
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Crossrefs

A306419 Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i.

Original entry on oeis.org

1, 1, 1, 1, 4, 11, 32, 99, 326, 1123, 4064, 15291, 59924, 242945, 1019584, 4409233, 19648674, 89938705, 422744384, 2035739041, 10039057524, 50610247483, 260704414816, 1370387233859, 7346982653702, 40131663286851, 223238920709024, 1263531826402891, 7273434344119460
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Comments

Also the number of spanning subgraphs of the complement of an n-cycle, with no overlapping edges.
I.e., for n >= 3, also the number of matchings in the complement of the cycle graph C_n. - Eric W. Weisstein, Sep 02 2025

Examples

			The a(1) = 1 through a(5) = 11 set partitions:
  {{1}}  {{1}{2}}  {{1}{2}{3}}  {{13}{24}}      {{1}{24}{35}}
                                {{1}{24}{3}}    {{13}{24}{5}}
                                {{13}{2}{4}}    {{13}{25}{4}}
                                {{1}{2}{3}{4}}  {{14}{2}{35}}
                                                {{14}{25}{3}}
                                                {{1}{2}{35}{4}}
                                                {{1}{24}{3}{5}}
                                                {{1}{25}{3}{4}}
                                                {{13}{2}{4}{5}}
                                                {{14}{2}{3}{5}}
                                                {{1}{2}{3}{4}{5}}
		

Crossrefs

Cf. A000085, A000110, A000296, A001006, A001610, A003436 (no singletons), A034807, A170941 (linear case), A278990 (linear case with no singletons), A306417.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}]
    (* Second program: *)
    CompoundExpression[
      b[n_] := I^(1 - n) 2^((n - 1)/2) HypergeometricU[(1 - n)/2, 3/2, -1/2],
      Join[{1, 1, 1}, Table[Sum[(-1)^k b[n - 2 k] n (n - 1 - k)!/(k! (n - 2 k)!), {k, 0, n/2}], {n, 3, 20}]]
    ] (* Eric W. Weisstein, Sep 02 2025 *)
  • PARI
    \\ here b(n) is A000085(n)
    b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))}
    a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ Andrew Howroyd, Aug 30 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*A034807(n, k)*A000085(n-2*k) for n > 2. - Andrew Howroyd, Aug 30 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019

A334059 Triangle read by rows: T(n,k) is the number of perfect matchings on {1, 2, ..., 2n} with k disjoint strings of adjacent short pairs.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 5, 8, 2, 0, 36, 49, 19, 1, 0, 329, 414, 180, 22, 0, 0, 3655, 4398, 1986, 344, 12, 0, 0, 47844, 55897, 25722, 5292, 377, 3, 0, 0, 721315, 825056, 384366, 87296, 8746, 246, 0, 0, 0, 12310199, 13856570, 6513530, 1577350, 192250, 9436, 90, 0, 0, 0
Offset: 0

Views

Author

Donovan Young, May 25 2020

Keywords

Comments

Number of configurations with k connected components (consisting of domino matchings) in the game of memory played on the path of length 2n, see [Young].

Examples

			Triangle begins:
   1;
   0,  1;
   1,  2,  0;
   5,  8,  2, 0;
  36, 49, 19, 1  0;
  ...
For n=2 and k=1 the configurations are (1,4),(2,3) (i.e. a single short pair) and (1,2),(3,4) (i.e. two adjacent short pairs); hence T(2,1) = 2.
		

Crossrefs

Row sums are A001147.
Column k=0 is A278990 (which is also column 0 of A079267).

Programs

  • Mathematica
    CoefficientList[Normal[Series[Sum[y^j*(2*j)!/2^j/j!*((1-y*(1-z))/(1-y^2*(1-z)))^(2*j+1), {j, 0, 20}], {y, 0, 20}]], {y, z}]
  • PARI
    T(n)={my(v=Vec(sum(j=0, n, (2*j)! * x^j * (1-(1-y)*x + O(x*x^n))^(2*j+1) / (j! * 2^j * (1-(1-y)*x^2 + O(x*x^n))^(2*j+1))))); vector(#v, i, Vecrev(v[i], i))}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, May 25 2020

Formula

G.f.: Sum_{j>=0} (2*j)! * y^j * (1-(1-z)*y)^(2*j+1) / (j! * 2^j * (1-(1-z)*y^2)^(2*j+1)).

A378862 Number of minimum edge covers in the n-cycle complement graph.

Original entry on oeis.org

0, 1, 5, 4, 70, 31, 972, 293, 14476, 3326, 237575, 44189, 4305960, 673471, 85836485, 11588884, 1871150248, 222304897
Offset: 3

Views

Author

Eric W. Weisstein, Dec 09 2024

Keywords

Comments

For even n, the minimum edge covers are perfect matchings. - Andrew Howroyd, Dec 10 2024

Crossrefs

Formula

a(2*n) = A003436(n). - Andrew Howroyd, Dec 10 2024
a(2*n+1) = (n-1)*(2*n+1)*A278990(n). - Detlef Meya, Dec 12 2024

Extensions

a(10)-a(20) from Andrew Howroyd, Dec 10 2024

A367000 Triangle read by rows: T(n,k) is the total number of bubbles of size k found in linear chord diagrams on 2n vertices.

Original entry on oeis.org

0, 0, 2, 0, 0, 1, 8, 4, 2, 2, 0, 5, 42, 30, 20, 15, 12, 10, 0, 36, 300, 240, 186, 147, 120, 99, 82, 72, 0, 329, 2730, 2310, 1920, 1605, 1356, 1155, 988, 848, 730, 658, 0, 3655, 30240, 26460, 22890, 19845, 17280, 15105, 13242, 11634, 10240, 9027, 7968, 7310, 0, 47844
Offset: 0

Views

Author

Donovan Young, Oct 31 2023

Keywords

Comments

A bubble is defined as a set of consecutive vertices such that no two adjacent vertices are joined by a chord, i.e., "short" chords are not allowed. A bubble is therefore bounded externally either by short chords, or by the ends of the diagram. T(n,k) counts the total number of bubbles consisting of k > 0 vertices, counted across all linear chord diagrams on 2n > 0 vertices.

Examples

			The first few rows of T(n,k) are:
   0,   0;
   2,   0,   0,   1;
   8,   4,   2,   2,   0,   5;
  42,  30,  20,  15,  12,  10,   0,  36;
For n = 2, let the four vertices be A, B, C, D. The diagram consisting of the chords (A,B) and (C,D) has no bubbles. The diagram consisting of the chords (A,D) and (B,C) has two bubbles of size 1: The vertex A is one bubble and the vertex D is the other. The diagram consisting of the chords (A,C) and (B,D) is itself a bubble of size 4. Hence T(2,1) = 2 and T(2,4) = 1.
		

Crossrefs

The last entry in each row forms A278990. See also A079267.

Programs

  • PARI
    N=2*n;
    G=0; for(j=0,j=N/2, G=G+taylor((1/((1 + w*(-1 + w*y^2))^2))*((((w^2*y^2)/(2*(1 + w^2*y^2)^2))^j*(2*j)!/j!* (-1 + w)^2*(-1 + w*y^2)^2)/(1 + w^2*y^2) - ((y^2)/2)^j/j!*w*y^2*((-2 + 2*w + (3 -4*w)*w*y^2 + (w + 2*(-1 + w)*w^2)*y^4 + w^3*y^6 )*(2*j)!+(-y^4 + w*y^4+ w*y^6 - 2*w^2*y^6 + w^3*y^8 )*(2*j+2)!)),y,N+1); );
    Tn=vector(N,x,0);
    for(k=1,k=N,Tn[k]=polcoeff(polcoeff(G,N,y),k,w););

Formula

G.f.: Sum_{j=0..n} (1/(1 + w*(-1 + w*y^2))^2)*((((w^2*y^2)/(2*(1 + w^2*y^2)^2))^j*((2*j)!/j!)* (-1 + w)^2*(-1 + w*y^2)^2)/(1 + w^2*y^2) - ((y^2)/2)^j*(w*y^2/j!)*((-2 + 2*w + (3 - 4*w)*w*y^2 + (w + 2*(-1 + w)*w^2)*y^4 + w^3*y^6)*(2*j)! + (-y^4 + w*y^4 + w*y^6 - 2*w^2*y^6 + w^3*y^8)*(2*j+2)!)).
Previous Showing 21-26 of 26 results.