A381715
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
{{2,2,2},{1,1,1,1,1,1}}
{{1},{2,2,2},{1,1,1,1,1}}
{{2},{2,2},{1,1,1,1,1,1}}
{{1,1},{2,2,2},{1,1,1,1}}
{{1},{2},{2,2},{1,1,1,1,1}}
{{1},{1,1},{1,1,1},{2,2,2}}
{{2},{1,1},{2,2},{1,1,1,1}}
{{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
{6,6}
{1,5,6}
{2,4,6}
{2,4,6}
{1,2,4,5}
{1,2,3,6}
{2,2,4,4}
{1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
Positions of terms > 1 are
A046099.
For equal instead of distinct blocks we have
A362421.
For strict instead of constant blocks we have
A381441, before sums
A050326.
A003963 gives product of prime indices.
Cf.
A000720,
A001222,
A002846,
A005117,
A050342,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
A382076
Number of integer partitions of n whose run-sums are not all equal.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 6, 13, 15, 27, 37, 54, 64, 99, 130, 172, 220, 295, 372, 488, 615, 788, 997, 1253, 1547, 1955, 2431, 3005, 3706, 4563, 5586, 6840, 8332, 10139, 12305, 14879, 17933, 21635, 26010, 31181, 37314, 44581, 53156, 63259, 75163, 89124, 105553, 124752, 147210
Offset: 0
The partition (3,2,1,1,1) has runs ((3),(2),(1,1,1)) with sums (3,2,3) so is counted under a(8).
The a(3) = 1 through a(8) = 15 partitions:
(21) (31) (32) (42) (43) (53)
(41) (51) (52) (62)
(221) (321) (61) (71)
(311) (411) (322) (332)
(2111) (2211) (331) (431)
(21111) (421) (521)
(511) (611)
(2221) (3221)
(3211) (3311)
(4111) (4211)
(22111) (5111)
(31111) (22211)
(211111) (32111)
(311111)
(2111111)
For distinct instead of equal block-sums we have
A381717.
A050361 counts factorizations into distinct prime powers, see
A381715.
A304405 counts partitions with weakly decreasing run-sums, ranks
A357875.
A304406 counts partitions with weakly increasing run-sums, ranks
A357861.
A304428 counts partitions with strictly decreasing run-sums, ranks
A357862.
A304430 counts partitions with strictly increasing run-sums, ranks
A357864.
A326534 ranks multiset partitions with a common sum.
A353837 counts partitions with distinct run-sums.
A354584 lists run-sums of weakly increasing prime indices.
A355743 ranks multiset partitions into constant blocks.
Cf.
A000688,
A005117,
A006171,
A047966,
A279784,
A381453,
A381455,
A381635,
A381636,
A381994,
A382204.
-
Table[Length[Select[IntegerPartitions[n],!SameQ@@Total/@Split[#]&]],{n,0,15}]
A381993
Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.
Original entry on oeis.org
0, 0, 0, 1, 1, 5, 4, 13, 13, 25, 33, 54, 54, 99, 124, 166, 207, 295, 352, 488, 591, 780, 987, 1253, 1488, 1951, 2419, 2993, 3665, 4563, 5508, 6840, 8270, 10127, 12289, 14869, 17781, 21635, 25992, 31167, 37184, 44581, 53008, 63259, 75076, 89080, 105531, 124752, 146842, 173516, 204141, 239921, 281461, 329929, 385852
Offset: 0
The multiset partition {{2},{2},{1,1},{1,1}} has both properties (constant blocks and common sum), so (2,2,1,1,1,1) is not counted under a(8). We can also use {{2,2},{1,1,1,1}}.
The a(3) = 1 through a(8) = 13 partitions:
(21) (31) (32) (42) (43) (53)
(41) (51) (52) (62)
(221) (321) (61) (71)
(311) (411) (322) (332)
(2111) (331) (431)
(421) (521)
(511) (611)
(2221) (3221)
(3211) (3311)
(4111) (4211)
(22111) (5111)
(31111) (32111)
(211111) (311111)
Twice-partitions of this type (constant with equal) are counted by
A279789.
For distinct instead of equal block-sums we have
A381717.
Normal multiset partitions of this type are counted by
A382204.
A050361 counts factorizations into distinct prime powers, see
A381715.
-
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
Table[Length[Select[IntegerPartitions[n],Length[Select[Join@@@Tuples[mce/@Split[#]],SameQ@@Total/@#&]]==0&]],{n,0,30}]
A356065
Squarefree numbers whose prime indices are all prime-powers.
Original entry on oeis.org
1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1
105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
The multiplicative version (factorizations) is
A050361, non-strict
A000688.
Counting twice-partitions of this type gives
A279786, non-strict
A279784.
These are the odd products of distinct elements of
A302493.
The case of primes (instead of prime-powers) is
A302590, non-strict
A076610.
These are the squarefree positions of 1's in
A355741.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A355742 chooses a prime-power divisor of each prime index.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]
A381995
Number of ways to partition the prime indices of n into constant blocks with a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 2 multiset partitions into constant blocks with a common sum:
{{2,2},{1,1,1,1}}
{{2},{2},{1,1},{1,1}}
so a(144) = 2.
For just constant blocks we have
A000688.
Twice-partitions of this type are counted by
A279789.
For just a common sum we have
A321455.
For distinct instead of equal sums we have
A381635.
MM-numbers of these multiset partitions are
A382215.
A050361 counts factorizations into distinct prime powers.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@SameQ@@@#&]],{n,100}]
A382080
Number of ways to partition the prime indices of n into sets with a common sum.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1
The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
{{1,2,3},{1,2,3}}
{{3},{3},{1,2},{1,2}}
So a(900) = 2.
Twice-partitions of this type are counted by
A279788.
For just a common sum we have
A321455.
For distinct instead of equal sums we have
A381633.
For constant instead of strict blocks we have
A381995.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]
A381991
Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1
The prime indices of 270 are {1,2,2,2,3}, and there are two multiset partitions into constant multisets with distinct sums: {{1},{2},{3},{2,2}} and {{1},{3},{2,2,2}}, so 270 is not in the sequence.
The prime indices of 300 are {1,1,2,3,3}, of which there are no multiset partitions into constant multisets with distinct sums, so 300 is not in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, of which there is only one multiset partition into constant multisets with distinct sums: {{1},{1,1},{3},{2,2}}, so 360 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
24: {1,1,1,2}
25: {3,3}
For distinct blocks instead of block-sums we have
A004709, counted by
A000726.
Twice-partitions of this type are counted by
A279786.
These are the positions of 1 in
A381635.
For strict instead of constant blocks we have
A381870, counted by
A382079.
Partitions of this type (unique into constant with distinct) are counted by
A382301.
Normal multiset partitions of this type are counted by
A382203.
-
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
Select[Range[100],Length[Select[pfacs[#],UnsameQ@@hwt/@#&]]==1&]
A354911
Number of factorizations of n into relatively prime prime-powers.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 5, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 1, 0, 6, 0, 1, 2, 2, 1, 1, 0, 5, 0, 1, 0, 2, 1, 1, 1
Offset: 1
The a(n) factorizations for n = 6, 12, 24, 36, 48, 72, 96:
2*3 3*4 3*8 4*9 3*16 8*9 3*32
2*2*3 2*3*4 2*2*9 2*3*8 2*4*9 3*4*8
2*2*2*3 3*3*4 3*4*4 3*3*8 2*3*16
2*2*3*3 2*2*3*4 2*2*2*9 2*2*3*8
2*2*2*2*3 2*3*3*4 2*3*4*4
2*2*2*3*3 2*2*2*3*4
2*2*2*2*2*3
For strict instead of relatively prime we have
A050361, partitions
A054685.
For pairwise coprime instead of relatively prime we have
A143731.
The version for partitions instead of factorizations is
A356067.
A001222 counts prime-power divisors.
A289509 lists numbers whose prime indices are relatively prime.
A295935 counts twice-factorizations with constant blocks (type PPR).
A355743 lists numbers with prime-power prime indices, squarefree
A356065.
Cf.
A000837,
A023893,
A076610,
A085970,
A106244,
A279784,
A318721,
A355737,
A355742,
A356064,
A356066.
-
ufacs[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[ufacs[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
Table[Length[Select[ufacs[Select[Divisors[n],PrimePowerQ[#]&],n],GCD@@#<=1&]],{n,100}]
A323582
Number of generalized Young tableaux with constant rows, weakly increasing columns, and entries summing to n.
Original entry on oeis.org
1, 1, 3, 5, 11, 16, 33, 47, 85, 126, 208, 299, 486, 685, 1050, 1496, 2221, 3097, 4523, 6239, 8901, 12219, 17093, 23202, 32120, 43200, 58899, 78761, 106210, 140786, 188192, 247689, 327965, 429183, 563592, 732730, 955851, 1235370, 1600205, 2057743, 2649254
Offset: 0
The a(5) = 16 tableaux:
5 1 1 1 1 1
.
1 2 1 1 1 1 1 1 1 1 1 1 1 1
4 3 3 2 1 1 1
.
1 1 1 1 1 1 1 1 1
1 2 1 1 1 1
3 2 2 1 1
.
1 1 1
1 1
1 1
2 1
.
1
1
1
1
1
Cf.
A000085,
A000219,
A003293,
A006951,
A100883,
A138178,
A279784,
A299968,
A323432,
A323436,
A323437,
A323438,
A323450.
-
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
Table[Sum[Length[Select[comps[ptn],And@@SameQ@@@#&&GreaterEqual@@Length/@#&]],{ptn,Sort/@IntegerPartitions[n]}],{n,10}]
A383014
Numbers whose prime indices can be partitioned into constant blocks with a common sum.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169
Offset: 1
The prime indices of 36 are {1,1,2,2}, and a partition into constant blocks with a common sum is: {{2},{2},{1,1}}, so 36 is in the sequence.
The prime indices of 43200 are {1,1,1,1,1,1,2,2,2,3,3}, and a partition into constant blocks with a common sum is: {{{1,1,1,1,1,1},{2,2,2},{3,3}}}, so 43200 is in the sequence.
The prime indices of 520000 are {1,1,1,1,1,1,3,3,3,3,6} and a partition into constant blocks with a common sum is: {{1,1,1,1,1,1},{3,3},{3,3},{6}}, so 520000 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
12: {1,1,2}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
32: {1,1,1,1,1}
36: {1,1,2,2}
37: {12}
40: {1,1,1,3}
Twice-partitions of this type (constant blocks with a common sum) are counted by
A279789.
For distinct sums we have the complement of
A381636.
For strict blocks we have the complement of
A381719.
For distinct sums and strict blocks we have the complement of
A381806.
These are the positions of positive terms in
A381995.
Partitions of this type are counted by
A383093.
A001055 counts factorizations (multiset partitions of prime indices), strict
A045778.
A050361 counts factorizations into distinct prime powers.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn, {ptn,IntegerPartitions[Length[y]]}];
Select[Range[100], Select[Join@@@Tuples[mce/@Split[prix[#]]], SameQ@@Total/@#&]!={}&]
Comments