cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A324337 a(n) = A002487(A006068(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 3, 4, 3, 2, 5, 1, 4, 5, 3, 5, 4, 3, 7, 2, 7, 8, 5, 1, 5, 7, 4, 7, 5, 3, 8, 6, 5, 4, 9, 3, 10, 11, 7, 2, 9, 12, 7, 11, 8, 5, 13, 1, 6, 9, 5, 10, 7, 4, 11, 9, 7, 5, 12, 3, 11, 13, 8, 7, 6, 5, 11, 4, 13, 14, 9, 3, 13, 17, 10, 15, 11, 7, 18, 2, 11, 16, 9, 17, 12, 7, 19, 14, 11, 8, 19, 5, 18, 21, 13, 1, 7, 11, 6, 13, 9, 5, 14, 13, 10
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Comments

Like in A324338, a few terms preceding each position n = 2^k seem to be a batch of nearby Fibonacci numbers in some order.
For all n > 0 A324338(n)/A324337(n) constitutes an enumeration system of all positive rationals. For all n > 0 A324338(n) + A324337(n) = A071585(n). - Yosu Yurramendi, Oct 22 2019

Crossrefs

Programs

Formula

From Yosu Yurramendi, Oct 22 2019: (Start)
a(2^m+ k) = A324338(2^m+2^(m-1)+k), m > 0, 0 <= k < 2^(m-1)
a(2^m+2^(m-1)+k) = A324338(2^m+ k), m > 0, 0 <= k < 2^(m-1). (End)
a(n) = A324338(A063946(n)), n > 0. Yosu Yurramendi, Nov 04 2019
a(n) = A002487(A248663(A283477(n))). - Antti Karttunen, Nov 06 2019
a(n) = A002487(1+A233279(n)). - Yosu Yurramendi, Nov 08 2019
From Yosu Yurramendi, Nov 28 2019: (Start)
a(2^(m+1)+k) - a(2^m+k) = A324338(k), m >= 0, 0 <= k < 2^m.
a(A059893(2^(m+1)+A001969(k+1))) - a(A059893(2^m+A001969(k+1))) = A071585(k), m >= 0, 0 <= k < 2^(m-1).
a(A059893(2^(m+1)+ A000069(k+1))) = A071585(k), m >= 1, 0 <= k < 2^(m-1). (End)
From Yosu Yurramendi, Nov 29 2019: (Start)
For n > 0:
A324338(n) + A324337(n) = A071585(n).
A324338(2*A001969(n) )-A324337(2*A001969(n) ) = A071585(n-1)
A324338(2*A001969(n)+1)-A324337(2*A001969(n)+1) = -A324337(n-1)
A324338(2*A000069(n) )-A324337(2*A000069(n) ) = -A071585(n-1)
A324338(2*A000069(n)+1)-A324337(2*A000069(n)+1) = A324338(n-1) (End)
a(n) = A002487(1+A233279(n)). - Yosu Yurramendi, Dec 27 2019

A324377 a(0) = 0; for n > 0, a(n) = A000265(A005187(n)).

Original entry on oeis.org

0, 1, 3, 1, 7, 1, 5, 11, 15, 1, 9, 19, 11, 23, 25, 13, 31, 1, 17, 35, 19, 39, 41, 21, 23, 47, 49, 25, 53, 27, 7, 57, 63, 1, 33, 67, 35, 71, 73, 37, 39, 79, 81, 41, 85, 43, 11, 89, 47, 95, 97, 49, 101, 51, 13, 105, 109, 55, 7, 113, 29, 117, 119, 15, 127, 1, 65, 131, 67, 135, 137, 69, 71, 143, 145, 73, 149, 75, 19
Offset: 0

Views

Author

Antti Karttunen, Feb 28 2019

Keywords

Crossrefs

Programs

Formula

a(0) = 0; for n > 0, a(n) = A000265(A005187(n)) = A005187(n) / 2^A324379(n).
a(n) = A322821(A283477(n)).

A283984 Sums of distinct nonzero terms of A007489: a(n) = Sum_{k>=0} A030308(n,k)*A007489(1+k).

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 12, 13, 33, 34, 36, 37, 42, 43, 45, 46, 153, 154, 156, 157, 162, 163, 165, 166, 186, 187, 189, 190, 195, 196, 198, 199, 873, 874, 876, 877, 882, 883, 885, 886, 906, 907, 909, 910, 915, 916, 918, 919, 1026, 1027, 1029, 1030, 1035, 1036, 1038, 1039, 1059, 1060, 1062, 1063, 1068, 1069, 1071, 1072, 5913
Offset: 0

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Comments

Indexing starts from zero, with a(0) = 0.

Crossrefs

Programs

Formula

a(n) = Sum_{i=0..A070939(n)} A030308(n,i)*A007489(1+i).
a(n) = A276075(A283477(n)).
Other identities. For all n >= 0:
a(2^n) = A007489(n+1).

A324286 a(n) = A002487(A048675(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 4, 2, 1, 1, 3, 1, 2, 3, 5, 1, 3, 1, 6, 2, 3, 1, 3, 1, 3, 4, 7, 2, 2, 1, 8, 5, 3, 1, 5, 1, 4, 1, 9, 1, 2, 1, 4, 6, 5, 1, 3, 3, 5, 7, 10, 1, 1, 1, 11, 2, 2, 4, 7, 1, 6, 8, 5, 1, 3, 1, 12, 3, 7, 2, 9, 1, 1, 1, 13, 1, 2, 5, 14, 9, 7, 1, 4, 3, 8, 10, 15, 6, 3, 1, 5, 3, 3, 1, 11, 1, 9, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Comments

Like A323902 and A323903, this also has quite a moderate growth rate, even though some terms of A048675 soon grow quite big.

Crossrefs

Programs

  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ From A048675
    A324286(n) = A002487(A048675(n));

Formula

a(n) = A002487(A048675(n)) = A002487(A322821(n)).
a(A283477(n)) = A324287(n).

A283483 Sums of distinct nonzero terms of A003462: a(n) = Sum_{k>=0} A030308(n,k)*A003462(1+k).

Original entry on oeis.org

0, 1, 4, 5, 13, 14, 17, 18, 40, 41, 44, 45, 53, 54, 57, 58, 121, 122, 125, 126, 134, 135, 138, 139, 161, 162, 165, 166, 174, 175, 178, 179, 364, 365, 368, 369, 377, 378, 381, 382, 404, 405, 408, 409, 417, 418, 421, 422, 485, 486, 489, 490, 498, 499, 502, 503, 525, 526, 529, 530, 538, 539, 542, 543, 1093, 1094, 1097, 1098, 1106, 1107, 1110, 1111
Offset: 0

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Comments

Indexing starts from zero, with a(0) = 0.

Crossrefs

Programs

Formula

a(n) = Sum_{i=0..A070939(n)} A030308(n,i)*A003462(1+i).
a(n) = A090880(A283477(n)).
Other identities. For all n >= 0:
a(2^n) = A003462(n+1).

A283981 a(n) = A029931(n) - A280700(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 3, 3, 3, 0, 4, 4, 4, 4, 4, 6, 7, 0, 5, 5, 5, 5, 5, 7, 8, 5, 5, 8, 9, 8, 9, 11, 11, 0, 6, 6, 6, 6, 6, 8, 9, 6, 6, 9, 10, 9, 10, 12, 12, 6, 6, 10, 11, 10, 11, 13, 13, 10, 11, 14, 14, 14, 14, 14, 17, 0, 7, 7, 7, 7, 7, 9, 10, 7, 7, 10, 11, 10, 11, 13, 13, 7, 7, 11, 12, 11, 12, 14, 14, 11, 12, 15, 15, 15, 15, 15, 18, 7, 7, 12, 13, 12, 13, 15, 15, 12
Offset: 0

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[#.Reverse@ Range@ Length@ # &@ IntegerDigits[n, 2] - DigitCount[2 n - DigitCount[2 n, 2, 1], 2, 1], {n, 0, 120}] (* Michael De Vlieger, Mar 20 2017, after Jean-François Alcover at A029931 *)
  • PARI
    a(n) = if(n<1, 0, a(n - 2^logint(n,2)) + logint(n,2) + 1);
    b(n) = if(n<1, 0, b(n\2) + n%2);
    A(n) = b(2*n - b(2*n));
    for(n=0, 150, print1(a(n) - A(n),", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    import math
    def L(n): return int(math.floor(math.log(n,2)))
    def a(n): return 0 if n<1 else a(n - 2**L(n)) + L(n) + 1
    def A(n): return bin(2*n - bin(2*n)[2:].count("1"))[2:].count("1")
    print([a(n) - A(n) for n in range(151)]) # Indranil Ghosh, Mar 21 2017
  • Scheme
    (define (A283981 n) (- (A029931 n) (A280700 n)))
    

Formula

a(n) = A029931(n) - A280700(n).
a(n) = A283982(n) + A124757(n).

A283982 a(0) = 0, and for n > 0, a(n) = A070939(n) - A280700(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 0, 0, 3, 2, 1, 1, 0, 1, 1, 0, 4, 3, 2, 2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 2, 1, 0, 5, 4, 3, 3, 2, 3, 3, 2, 1, 3, 3, 2, 2, 3, 2, 1, 0, 3, 3, 2, 2, 3, 2, 1, 1, 3, 2, 2, 1, 0, 2, 0, 6, 5, 4, 4, 3, 4, 4, 3, 2, 4, 4, 3, 3, 4, 3, 2, 1, 4, 4, 3, 3, 4, 3, 2, 2, 4, 3, 3, 2, 1, 3, 1, 0, 4, 4, 3, 3, 4, 3, 2, 2, 4, 3, 3, 2, 1, 3, 1, 1, 4, 3, 3, 2, 1, 3, 2
Offset: 0

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Crossrefs

Programs

Formula

a(0) = 0, for n > 0, a(n) = A070939(n) - A280700(n).
a(n) = A283981(n) - A124757(n).

A322804 Numbers that can be written as a product of one or more consecutive primorial numbers.

Original entry on oeis.org

1, 2, 6, 12, 30, 180, 210, 360, 2310, 6300, 30030, 37800, 75600, 485100, 510510, 9699690, 14553000, 69369300, 87318000, 174636000, 223092870, 6469693230, 14567553000, 15330615300, 200560490130, 437026590000, 2622159540000, 4951788741900, 5244319080000
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Crossrefs

A309841 If n = Sum (2^e_k) then a(n) = Product ((e_k + 2)!).

Original entry on oeis.org

1, 2, 6, 12, 24, 48, 144, 288, 120, 240, 720, 1440, 2880, 5760, 17280, 34560, 720, 1440, 4320, 8640, 17280, 34560, 103680, 207360, 86400, 172800, 518400, 1036800, 2073600, 4147200, 12441600, 24883200, 5040, 10080, 30240, 60480, 120960, 241920, 725760, 1451520, 604800
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2019

Keywords

Examples

			21 = 2^0 + 2^2 + 2^4 so a(21) = 2! * 4! * 6! = 34560.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul((i+1)!^l[i], i=1..nops(l)))(convert(n, base, 2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + (k + 2)! x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := (Floor[Log[2, n]] + 2)! a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 40}]
  • PARI
    a(n)={vecprod([(k+1)! | k<-Vec(select(b->b, Vecrev(digits(n, 2)), 1))])} \\ Andrew Howroyd, Aug 19 2019

Formula

G.f.: Product_{k>=0} (1 + (k + 2)! * x^(2^k)).
a(0) = 1; a(n) = (floor(log_2(n)) + 2)! * a(n - 2^floor(log_2(n))).
a(2^(k-1)-1) = A000178(k).

A361376 Rewrite A129912(n), a product of distinct primorials P(i) = A002110(i) instead as a sum of powers 2^(i-1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 16, 11, 17, 12, 13, 18, 19, 32, 14, 33, 20, 15, 21, 34, 35, 22, 24, 64, 23, 36, 25, 65, 37, 26, 66, 38, 27, 67, 40, 128, 39, 41, 28, 68, 129, 29, 69, 42, 130, 48, 43, 30, 70, 72, 131, 49, 31, 71, 44, 73, 256, 132, 45, 50, 257, 133, 74, 51, 46, 80, 75, 258, 134, 136
Offset: 1

Views

Author

Michael De Vlieger, Jun 08 2023

Keywords

Comments

Permutation of nonnegative numbers.

Examples

			a(1) = 0 by convention.
a(8) = 8 comes before a(9) = 7, since we interpret 8 = 2^3 instead as P(4) = 210, while for a(9), 7 = 2^2 + 2^1 + 2^0 becomes P(3)*P(2)*P(1) = 30*6*2 = 360. Because 210 < 360, 8 appears before 7 in this sequence.
Table relating a(n), n=1..19 with the set S(n) of indices of distinct primorial factors of A129912(n):
   n A129912(n)  S(n)   a(n)  A272011(a(n))
  -----------------------------------------
   1         1            0
   2         2   1        1   0
   3         6   2        2   1
   4        12   2,1      3   1,0
   5        30   3        4   2
   6        60   3,1      5   2,0
   7       180   3,2      6   2,1
   8       210   4        8   3
   9       360   3,2,1    7   2,1,0
  10       420   4,1      9   3,0
  11      1260   4,2     10   3,1
  12      2310   5       16   4
  13      2520   4,2,1   11   3,1,0
  14      4620   5,1     17   4,0
  15      6300   4,3     12   3,2
  16     12600   4,3,1   13   3,2,0
  17     13860   5,2     18   4,1
  18     27720   5,2,1   19   4,1,0
  19     30030   6       32   5
  ...
		

Crossrefs

Programs

  • Mathematica
    a6939[n_] := Product[Prime[n + 1 - i]^i, {i, n}];
    g[m_] := Block[{f, j = 1},
      f[n_, i_, e_] :=
       If[n < m, Block[{p = Prime[i + 1]}, If[e == 1, Sow@ n];
         f[n p^e, i + 1, e];
         If[e > 1, f[n p^(e - 1), i + 1, e - 1]]]];
      Sort@ Reap[While[a6939[j] < m, f[2^j, 1, j]; j++]][[-1, 1]] ];
    Map[Total@
         Map[2^(# - 1) &,
          Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} ] &[
    FactorInteger[#][[All, -1]]] &, g[2^31]] (* Michael De Vlieger, Jun 08 2023, after Giovanni Resta at A129929 *)

Formula

Let S(n) be the set of indices of primorials P(i), reverse sorted, such that A129912(n) = Product_{k=1..m} S(n,k), where m = | S(n) |. Then a(n) = Sum_{k=1..m} 2^(S(n,k)-1).
Previous Showing 31-40 of 40 results.