A285765
Number of connected induced (non-null) subgraphs of the n X n queen graph.
Original entry on oeis.org
1, 15, 495, 64815, 33478163, 68694593248
Offset: 1
Cf.
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286185 (Möbius ladder),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A286189 (rook).
-
Table[g = GraphData[{"Queen", {n, n}}]; -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[n^2]}], {n, 4}]
A286186
Number of connected induced (non-null) subgraphs of the friendship graph with 2n+1 nodes.
Original entry on oeis.org
7, 22, 73, 268, 1039, 4114, 16405, 65560, 262171, 1048606, 4194337, 16777252, 67108903, 268435498, 1073741869, 4294967344, 17179869235, 68719476790, 274877907001, 1099511627836, 4398046511167, 17592186044482, 70368744177733, 281474976710728, 1125899906842699
Offset: 1
Cf.
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286185 (Möbius ladder),
A286187 (web),
A286188 (gear),
A286189 (rook),
A285765 (queen).
-
Table[4^n + 3 n, {n, 30}]
LinearRecurrence[{6,-9,4},{7,22,73},40] (* Harvey P. Dale, May 25 2019 *)
-
Vec(x*(7 - 20*x + 4*x^2) / ((1 - x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 21 2017
A262307
Array read by antidiagonals: T(m,n) = number of m X n binary matrices with all 1's connected and no zero rows or columns.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 205, 65, 1, 1, 211, 1795, 1795, 211, 1, 1, 665, 14221, 36317, 14221, 665, 1, 1, 2059, 106819, 636331, 636331, 106819, 2059, 1, 1, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 1
Offset: 1
Table starts:
==========================================================================
m\n| 1 2 3 4 5 6 7
---|----------------------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 5 19 65 211 665 2059 ...
3 | 1 19 205 1795 14221 106819 778765 ...
4 | 1 65 1795 36317 636331 10365005 162470155 ...
5 | 1 211 14221 636331 23679901 805351531 26175881341 ...
6 | 1 665 106819 10365005 805351531 56294206205 3735873535339 ...
7 | 1 2059 778765 162470155 26175881341 3735873535339 502757743028605 ...
...
As a triangle, this begins:
1;
1, 1;
1, 5, 1;
1, 19, 19, 1;
1, 65, 205, 65, 1;
1, 211, 1795, 1795, 211, 1;
1, 665, 14221, 36317, 14221, 665, 1;
1, 2059, 106819, 636331, 636331, 106819, 2059, 1;
...
Essentially same table as triangle
A227322 (where the antidiagonals only go halfway).
-
A183109[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m-j) - 1)^n, {j, 0, m}];
T[m_, n_] := A183109[m, n] - Sum[T[i, j]*A183109[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}];
Table[T[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
-
G(N)={my(S=matrix(N,N), T=matrix(N,N));
for(m=1,N,for(n=1,N,
S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j)));
));T}
G(7) \\ Andrew Howroyd, May 22 2017
Revised by
N. J. A. Sloane, May 26 2017, to incorporate material from
Andrew Howroyd's May 22 2017 submission (formerly
A287297), which was essentially identical to this, although giving an alternative description and more information.
A360873
Array read by antidiagonals: T(m,n) is the number of (non-null) connected induced subgraphs in the rook graph K_m X K_n.
Original entry on oeis.org
1, 3, 3, 7, 13, 7, 15, 51, 51, 15, 31, 205, 397, 205, 31, 63, 843, 3303, 3303, 843, 63, 127, 3493, 27877, 55933, 27877, 3493, 127, 255, 14451, 233751, 943095, 943095, 233751, 14451, 255, 511, 59485, 1938517, 15678925, 31450861, 15678925, 1938517, 59485, 511
Offset: 1
Array begins:
=======================================================
m\n| 1 2 3 4 5 6 ...
---+---------------------------------------------------
1 | 1 3 7 15 31 63 ...
2 | 3 13 51 205 843 3493 ...
3 | 7 51 397 3303 27877 233751 ...
4 | 15 205 3303 55933 943095 15678925 ...
5 | 31 843 27877 943095 31450861 1033355223 ...
6 | 63 3493 233751 15678925 1033355223 67253507293 ...
...
-
\\ S is A183109, T is A262307, U is this sequence.
G(M,N=M)={ my(S=matrix(M, N), T=matrix(M, N), U=matrix(M, N));
for(m=1, M, for(n=1, N,
S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
U[m, n]=sum(i=1, m, sum(j=1, n, binomial(m, i)*binomial(n, j)*T[i, j])) )); U
}
{ my(A=G(7)); for(n=1, #A~, print(A[n,])) }
A285934
Number of connected induced (non-null) subgraphs of the perfect binary tree of height n.
Original entry on oeis.org
1, 6, 37, 750, 459829, 210067308558, 44127887746326310604917, 1947270476915296449559791701269341583074001038
Offset: 0
Cf.
A003095,
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286185 (Möbius ladder),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A286189 (rook),
A285765 (queen).
A286191
a(n) = (2^n-1)^2 + 2*n.
Original entry on oeis.org
3, 13, 55, 233, 971, 3981, 16143, 65041, 261139, 1046549, 4190231, 16769049, 67092507, 268402717, 1073676319, 4294836257, 17179607075, 68718952485, 274876858407, 1099509530665, 4398042316843, 17592177655853, 70368727400495, 281474943156273, 1125899839733811
Offset: 1
Cf.
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286185 (Möbius ladder),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A286189 (rook),
A285765 (queen).
-
a[n_] := (2^n-1)^2 + 2*n; Array[a, 30]
Table[(2^n - 1)^2 + 2 n, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
LinearRecurrence[{8, -21, 22, -8}, {3, 13, 55, 233}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
CoefficientList[Series[(3 - 11 x + 14 x^2)/((-1 + x)^2 (1 - 6 x + 8 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)
-
Vec(x*(3 - 11*x + 14*x^2) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 30 2017
A289196
Number of connected dominating sets in the n X n rook graph.
Original entry on oeis.org
1, 9, 325, 51465, 30331861, 66273667449, 556170787050565, 18374555799096912585, 2414861959450912233421141, 1267166974391002542218440851129, 2658149210218078451926703769353958085, 22299979556058598891936157095746389850916425
Offset: 1
-
(* b = A183109, T = A262307 *) b[m_, n_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}]; T[, 1] = T[1, ] = 1; T[m_, n_] := T[m, n] = b[m, n] - Sum[T[i, j]*b[m-i, n-j]*Binomial[m-1, i-1]*Binomial[n, j], {i, 1, m-1}, {j, 1, n-1}]; a[n_] := T[n, n] + 2*Sum[ Binomial[n, k]*T[n, k], {k, 1, n-1}]; Array[a, 12] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
-
G(N)={S=matrix(N, N); T=matrix(N, N); U=matrix(N, N);
\\ S is A183109, T is A262307, U is m X n variant of this sequence.
for(m=1, N, for(n=1, N,
S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
U[m, n]=sum(i=1, m, binomial(m, i)*T[i, n])+sum(j=1, n, binomial(n,j)*T[m, j])-T[m,n] )); U}
a(n)=G(n)[n, n]; \\ Andrew Howroyd, Jul 18 2017
A360852
Number of induced paths in the n X n rook graph.
Original entry on oeis.org
0, 8, 126, 2208, 55700, 2006280, 98309778, 6291829376, 509638185288, 50963818537800, 6166622043087110, 887993574204562848, 150070914040571147676, 29413899151951944980168, 6618127309189187620585050, 1694240591152432030869834240, 489635530843052856921382173968
Offset: 1
A286304
Number of connected induced (non-null) subgraphs of the complete binary tree with n nodes.
Original entry on oeis.org
1, 3, 6, 10, 17, 24, 37, 51, 78, 110, 173, 229, 340, 477, 750, 1024, 1571, 2253, 3616, 5024, 7839, 11356, 18389, 25173, 38740, 55697, 89610, 124870, 195389, 283536, 459829, 636123, 988710, 1429442, 2310905, 3227617, 5061040, 7352817, 11936370, 16526444
Offset: 1
Cf.
A285934,
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286185 (Möbius ladder),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A286189 (rook),
A285765 (queen).
-
Join[{1}, Table[g=KaryTree[n]; -1 + ParallelSum[Boole@ConnectedGraphQ@Subgraph[g, s], {s, Subsets@Range[n]}], {n, 2, 16}]]
(* Second program: *)
l[n_] := With[{h = 2^Floor[Log[2, n]]}, Min[h - 1, n - h/2]];
b[n_] := b[n] = 1 + If[n <= 1, n, b[l[n]]*b[n - 1 - l[n]]];
a[n_] := a[n] = If[n <= 1, n, b[n] - 1 + a[l[n]] + a[n - 1 - l[n]]];
Array[a, 40] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
-
l(n)={my(h=2^floor(log(n)/log(2))); min(h-1,n-h/2)}
b(n)=1+if(n<=1,n,b(l(n))*b(n-1-l(n)));
a(n)=if(n<=1,n,b(n)-1 + a(l(n)) + a(n-1-l(n))); \\ Andrew Howroyd, May 22 2017
A362575
Number of vertex cuts in the n X n rook graph.
Original entry on oeis.org
0, 2, 114, 9602, 2103570, 1465969442, 3767396928834, 38267690721261122, 1543992652549401346770, 246181774152151716764436962, 154911195038079578918382192282114, 384894219829087015520536416987293088002, 3779926606713983438336679626484814602924257490
Offset: 1
Comments