cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A355533 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime(k), then row n is just (k).

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 0, 2, 5, 0, 1, 6, 3, 1, 0, 0, 0, 7, 1, 0, 8, 0, 2, 2, 4, 9, 0, 0, 1, 0, 5, 0, 0, 0, 3, 10, 1, 1, 11, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 12, 7, 4, 0, 0, 2, 13, 1, 2, 14, 0, 4, 0, 1, 8, 15, 0, 0, 0, 1, 0, 2, 0
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices before taking differences is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, with no effect on the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       1
   3:    (2)       2
   4:   (1,1)      0
   5:    (3)       3
   6:   (1,2)      1
   7:    (4)       4
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       5
  12:  (1,1,2)    0 1
  13:    (6)       6
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
For example, the prime indices of 24 are (1,1,1,2), with differences (0,0,1).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row sums are A243056.
The version for prime indices prepended by 0 is A287352.
Constant rows have indices A325328.
Strict rows have indices A325368.
Number of distinct terms in each row are 1 if prime, otherwise A355523.
Row minima are A355525, augmented A355531.
Row maxima are A355526, augmented A355535.
The augmented version is A355534, Heinz number A325351.
The version with prime-indexed rows empty is A355536, Heinz number A325352.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[PrimeQ[n],{PrimePi[n]},Differences[primeMS[n]]],{n,2,30}]

Formula

Row lengths are 1 or A001222(n) - 1 depending on whether n is prime.

A356227 Smallest size of a maximal gapless submultiset of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 3, 1, 1, 2, 4, 1, 3, 1, 1, 1, 1, 1, 4, 2, 1, 3, 1, 1, 3, 1, 5, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}, so a(18564) = 1.
		

Crossrefs

Positions of first appearances are A000079.
The maximal gapless submultisets are counted by A287170, firsts A066205.
These are the row-minima of A356226, firsts A356232.
The greatest instead of smallest size is A356228.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, cf. A073492-A073495.
A356224 counts even gapless divisors, complement A356225.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Min@@Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

a(n) = A333768(A356230(n)).
a(n) = A055396(A356231(n)).

A356841 Numbers k such that the k-th composition in standard order covers an interval of positive integers (gapless).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 64, 68, 72, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and their corresponding standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
  18: (3,2)
  20: (2,3)
  21: (2,2,1)
		

Crossrefs

See link for sequences related to standard compositions.
An unordered version is A073491, complement A073492.
These compositions are counted by A107428.
The complement is A356842.
The non-initial case is A356843, unordered A356845.
A356230 ranks gapless factorization lengths, firsts A356603.
A356233 counts factorizations into gapless numbers.
A356844 ranks compositions with at least one 1.

Programs

  • Mathematica
    nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]];
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],nogapQ[stc[#]]&]

A365920 Greatest non-subset-sum of the prime indices of n, or 0 if there is none.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 3, 2, 4, 0, 5, 3, 4, 0, 6, 0, 7, 0, 5, 4, 8, 0, 5, 5, 5, 3, 9, 0, 10, 0, 6, 6, 6, 0, 11, 7, 7, 0, 12, 0, 13, 4, 6, 8, 14, 0, 7, 5, 8, 5, 15, 0, 7, 0, 9, 9, 16, 0, 17, 10, 7, 0, 8, 4, 18, 6, 10, 6, 19, 0, 20, 11, 7, 7, 8, 5, 21, 0, 7, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2023

Keywords

Comments

This is the greatest element of {0,...,A056239(n)} that is not equal to A056239(d) for any divisor d|n, d>1. This definition is analogous to the Frobenius number of a numerical semigroup (see link), but it looks only at submultisets of a finite multiset, not all multisets of elements of a set.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 156 are {1,1,2,6}, with subset-sums 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, so a(156) = 5.
		

Crossrefs

For binary indices instead of sums we have A063250.
Positions of first appearances > 2 are A065091.
Zeros are A325781, nonzeros A325798.
For prime indices instead of sums we have A339662, minimum A257993.
For least instead of greatest non-subset-sum we have A366128.
A055932 lists numbers whose prime indices cover an initial interval.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Max@@Prepend[nmz[prix[n]],0],{n,100}]

A355531 Minimal augmented difference between adjacent reversed prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 1, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 2, 1, 9, 1, 1, 1, 1, 1, 10, 1, 11, 1, 2, 1, 2, 1, 12, 1, 2, 1, 13, 1, 14, 1, 1, 1, 15, 1, 1, 1, 2, 1, 16, 1, 3, 1, 2, 1, 17, 1, 18, 1, 1, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 1, 1, 2, 1, 22, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

Examples

			The reversed prime indices of 825 are (5,3,3,2), with augmented differences (3,1,2,2), so a(825) = 1.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are A008578.
Positions of 1's are 2 followed by A013929.
The non-augmented maximal version is A286470, also A355526.
The non-augmented version is A355524, also A355525.
Row minima of A355534, which has Heinz number A325351.
The maximal version is A355535.
A001222 counts prime indices.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A357137 Maximal run-length of the n-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 3, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 3, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), so a(92) = 2.
		

Crossrefs

See link for more sequences related to standard compositions.
The version for Heinz numbers of partitions is A051903, for parts A061395.
For parts instead of run-lengths we have A333766, minimal A333768.
The opposite (minimal) version is A357138.
For first instead of maximal we have A357180, last A357181.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Max[Length/@Split[stc[n]]]],{n,0,100}]

A339737 Triangle read by rows where T(n,k) is the number of integer partitions of n with greatest gap k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 1, 2, 2, 1, 1, 0, 5, 1, 3, 2, 2, 1, 1, 0, 6, 2, 3, 4, 3, 2, 1, 1, 0, 8, 2, 4, 5, 4, 3, 2, 1, 1, 0, 10, 2, 5, 7, 6, 5, 3, 2, 1, 1, 0, 12, 3, 6, 8, 9, 6, 5, 3, 2, 1, 1, 0, 15, 3, 8, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   0   1   0
   2   1   1   1   0
   3   1   1   1   1   0
   4   1   2   2   1   1   0
   5   1   3   2   2   1   1   0
   6   2   3   4   3   2   1   1   0
   8   2   4   5   4   3   2   1   1   0
  10   2   5   7   6   5   3   2   1   1   0
  12   3   6   8   9   6   5   3   2   1   1   0
  15   3   8  11  11  10   7   5   3   2   1   1   0
  18   4   9  13  15  13  10   7   5   3   2   1   1   0
  22   5  10  17  19  18  14  11   7   5   3   2   1   1   0
  27   5  13  20  24  23  20  14  11   7   5   3   2   1   1   0
For example, row n = 9 counts the following partitions:
  (3321)       (432)   (333)      (54)      (522)    (63)    (72)   (81)  (9)
  (22221)      (3222)  (4311)     (441)     (531)    (621)   (711)
  (32211)              (33111)    (4221)    (5211)   (6111)
  (222111)             (3111111)  (42111)   (51111)
  (321111)                        (411111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Column k = 0 is A000009.
Row sums are A000041.
Central diagonal is A000041.
Column k = 1 is A087897.
The version for least gap is A264401, with Heinz number encoding A257993.
The version for greatest difference is A286469 or A286470.
An encoding (of greatest gap) using Heinz numbers is A339662.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A048004 counts compositions by greatest part.
A056239 adds up prime indices, row sums of A112798.
A064391 is the version for crank.
A064428 counts partitions of nonnegative crank.
A073491 list numbers with gap-free prime indices.
A107428 counts gap-free compositions.
A238709/A238710 counts partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[Length[Select[IntegerPartitions[n],maxgap[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    S(n,k)={if(k>n, O(x*x^n), x^k*(S(n-k,k+1) + 1)/(1 - x^k))}
    ColGf(k,n) = {(k==0) + S(n,k+1)/prod(j=1, k-1, 1 - x^j + O(x^max(1,n-k)))}
    A(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(M=A(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Jan 13 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 13 2024

A355528 Minimal difference between adjacent 0-prepended prime indices of n > 1.

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 1, 5, 0, 6, 1, 1, 0, 7, 0, 8, 0, 2, 1, 9, 0, 0, 1, 0, 0, 10, 1, 11, 0, 2, 1, 1, 0, 12, 1, 2, 0, 13, 1, 14, 0, 0, 1, 15, 0, 0, 0, 2, 0, 16, 0, 2, 0, 2, 1, 17, 0, 18, 1, 0, 0, 3, 1, 19, 0, 2, 1, 20, 0, 21, 1, 0, 0, 1, 1, 22, 0, 0, 1, 23
Offset: 2

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 9842 are {0,1,4,8,12}, with differences (1,3,4,4), so a(9842) = 1.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are 4 followed by A000040.
Positions of positive terms are A005117, complement A013929.
A similar statistic is counted by A238353.
The maximal version is A286469, without prepending A355526.
Without prepending we have A355524 or A355525.
Positions of ones are A355530.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A112798 lists prime indices, with sum A056239.
A287352, A355533, A355534, A355536 list the differences of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Min@@Differences[Prepend[primeMS[n],0]],{n,2,100}]

A355527 Squarefree numbers having at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent prime indices of n is 1.

Original entry on oeis.org

6, 15, 30, 35, 42, 66, 70, 77, 78, 102, 105, 114, 138, 143, 154, 165, 174, 186, 195, 210, 221, 222, 231, 246, 255, 258, 282, 285, 286, 318, 323, 330, 345, 354, 366, 385, 390, 402, 426, 429, 435, 437, 438, 442, 455, 462, 465, 474, 498, 510, 534, 546, 555, 570
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A number is squarefree if it is not divisible by any perfect square > 1.
A number has consecutive prime factors if it is divisible by both prime(k) and prime(k+1) for some k.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   15: {2,3}
   30: {1,2,3}
   35: {3,4}
   42: {1,2,4}
   66: {1,2,5}
   70: {1,3,4}
   77: {4,5}
   78: {1,2,6}
  102: {1,2,7}
  105: {2,3,4}
  114: {1,2,8}
  138: {1,2,9}
  143: {5,6}
  154: {1,4,5}
  165: {2,3,5}
  174: {1,2,10}
  186: {1,2,11}
  195: {2,3,6}
  210: {1,2,3,4}
		

Crossrefs

Crossrefs found in the link are not repeated here.
All terms are in A005117, complement A013929.
For minimal difference <= 1 we have A055932.
For maximal instead of minimal difference = 1 we have A066312.
For minimal difference > 1 we have A325160.
If zero is considered a prime index we get A355530.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A287352, A355533, A355534, A355536 list the differences of prime indices.
A355524 or A355525 give minimal difference between prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Min@@Differences[primeMS[#]]==1&]

Formula

Intersection of A005117 (squarefree) and A104210 (has consecutive primes).

A355532 Maximal augmented difference between adjacent reversed prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 2, 1, 7, 2, 8, 3, 3, 5, 9, 2, 3, 6, 2, 4, 10, 2, 11, 1, 4, 7, 3, 2, 12, 8, 5, 3, 13, 3, 14, 5, 2, 9, 15, 2, 4, 3, 6, 6, 16, 2, 3, 4, 7, 10, 17, 2, 18, 11, 3, 1, 4, 4, 19, 7, 8, 3, 20, 2, 21, 12, 2, 8, 4, 5, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

Examples

			The reversed prime indices of 825 are (5,3,3,2), with augmented differences (3,1,2,2), so a(825) = 3.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Prepending 1 to the positions of 1's gives A000079.
Positions of first appearances are A008578.
Positions of 2's are A065119.
The non-augmented version is A286470, also A355526.
The non-augmented minimal version is A355524, also A355525.
The minimal version is A355531.
Row maxima of A355534, which has Heinz number A325351.
A001222 counts prime indices, distinct A001221.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				
Previous Showing 21-30 of 47 results. Next