cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A303838 Number of z-forests with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1.
This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A134954(k).
Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49.

Examples

			The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
       (60): {{1,1,2,3}}
     (3,20): {{2},{1,1,3}}
     (4,15): {{1,1},{2,3}}
     (4,30): {{1,1},{1,2,3}}
     (5,12): {{3},{1,1,2}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
    (3,4,5): {{2},{1,1},{3}}
   (3,4,10): {{2},{1,1},{1,3}}
    (4,5,6): {{1,1},{3},{1,2}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]

A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3, 17, 11, 24, 10, 40, 16, 53, 35, 71, 43, 112, 68, 144, 112, 203, 152, 301, 219, 393, 342, 540, 474, 770, 661, 1022, 967, 1397, 1313, 1928, 1821, 2565, 2564, 3439, 3445, 4676, 4687, 6186, 6406, 8215, 8543, 10974, 11435
Offset: 0

Views

Author

Liam Naughton, Nov 26 2012

Keywords

Comments

a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected.

Examples

			From _Gus Wiseman_, Dec 03 2018: (Start)
The a(12) = 14 connected integer partitions of 12:
  (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)
        (8,4)   (6,3,3)  (4,4,2,2)
        (9,3)   (6,4,2)  (6,2,2,2)
        (10,2)  (8,2,2)
(End)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]==1&]],{n,10}]

Formula

For n > 1, a(n) = A304716(n) - 1. - Gus Wiseman, Dec 03 2018

Extensions

More terms from Gus Wiseman, Dec 03 2018

A304717 Number of connected strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 9, 5, 9, 8, 13, 10, 15, 9, 15, 13, 18, 14, 22, 21, 26, 19, 29, 24, 36, 31, 40, 35, 45, 38, 54, 55, 59, 55, 70, 69, 84, 74, 89, 86, 107, 103, 119, 115, 143, 143, 159
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(34) = 13 connected strict integer partitions with pairwise indivisible parts are (34), (18,16), (20,14), (22,12), (24,10), (26,8), (28,6), (30,4), (14,12,8), (15,10,9), (20,8,6), (14,10,6,4), (15,9,6,4). Their corresponding multiset multisystems (see A112798, A302242) are the following.
         (34): {{1,7}}
       (30 4): {{1,2,3},{1,1}}
       (28 6): {{1,1,4},{1,2}}
       (26 8): {{1,6},{1,1,1}}
      (24 10): {{1,1,1,2},{1,3}}
      (22 12): {{1,5},{1,1,2}}
      (20 14): {{1,1,3},{1,4}}
     (20 8 6): {{1,1,3},{1,1,1},{1,2}}
      (18 16): {{1,2,2},{1,1,1,1}}
    (15 10 9): {{2,3},{1,3},{2,2}}
   (15 9 6 4): {{2,3},{2,2},{1,2},{1,1}}
    (14 12 8): {{1,4},{1,1,2},{1,1,1}}
  (14 10 6 4): {{1,4},{1,3},{1,2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,30}]

A305193 Number of connected factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 10, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 2, 2, 5, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence counts factorizations S such that G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 07 2018

Examples

			The a(72) = 10 factorizations:
(72),
(2*2*18), (2*3*12), (2*6*6), (3*4*6),
(2*36), (3*24), (4*18), (6*12),
(2*2*3*6).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[zsm[#]]==1&]],{n,100}]
  • PARI
    is_connected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A305193aux(n, m, facs) = if(1==n, is_connected(Set(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A305193aux(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Nov 07 2018
    A305193(n) = if(1==n,0,A305193aux(n, n, List([]))); \\ Antti Karttunen, Nov 07 2018

Extensions

More terms from Antti Karttunen, Nov 07 2018

A304382 Number of z-trees summing to n. Number of connected strict integer partitions of n with pairwise indivisible parts and clutter density -1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 8, 4, 9, 8, 13, 9, 15, 8, 14, 12, 16, 12, 20, 20, 24, 15, 27, 20, 33, 27, 35
Offset: 1

Views

Author

Gus Wiseman, May 21 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
The clutter density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(LCM(S)).

Examples

			The a(30) = 8 z-trees together with the corresponding multiset systems are the following.
       (30): {{1,2,3}}
     (26,4): {{1,6},{1,1}}
     (22,8): {{1,5},{1,1,1}}
     (21,9): {{2,4},{2,2}}
    (16,14): {{1,1,1,1},{1,4}}
   (15,9,6): {{2,3},{2,2},{1,2}}
  (14,10,6): {{1,4},{1,3},{1,2}}
  (12,10,8): {{1,1,2},{1,3},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    strConnAnti[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]==1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}&];
    Table[Length[Select[strConnAnti[n],Length[#]==1||zreeQ[#]&]],{n,20}]

A317634 Number of caps (also clutter partitions) of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 9, 315, 64880
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A kernel of a clutter is the restriction of the edge set to all edges contained within some connected vertex set. A clutter partition is a set partition of the edge set using kernels.

Examples

			The a(3) = 9 clutter partitions:
  {{{1,2,3}}}
  {{{1,3},{2,3}}}
  {{{1,2},{2,3}}}
  {{{1,2},{1,3}}}
  {{{1,3}},{{2,3}}}
  {{{1,2}},{{2,3}}}
  {{{1,2}},{{1,3}}}
  {{{1,2},{1,3},{2,3}}}
  {{{1,2}},{{1,3}},{{2,3}}}
		

Crossrefs

A317635 Number of connected vertex sets of clutters (connected antichains) spanning n vertices.

Original entry on oeis.org

1, 0, 1, 14, 486, 71428
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2018

Keywords

Comments

A connected vertex set in a clutter is any union of a connected subset of the edges.

Examples

			There are four connected vertex sets of {{1,2},{1,3},{2,3}}, namely {1,2,3}, {1,2}, {1,3}, {2,3}; there are three connected vertex sets of {{1,2},{1,3}}, {{1,2},{2,3}}, and {{1,3},{2,3}} each; and there is one connected vertex set of {{1,2,3}}. So we have a total of a(3) = 4 + 3 * 3 + 1 = 14 connected vertex sets.
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    clutQ[eds_]:=And[UnsameQ@@eds,!Apply[Or,Outer[#1=!=#2&&Complement[#1,#2]=={}&,eds,eds,1],{0,1}],Length[csm[eds]]==1];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    swell[c_]:=Union@@FixedPointList[Union[ReplaceList[#1,{_,a:{_,x_,_},_,b:{_,x_,_},_}:>Union[a,b]]]&,c]
    Table[Sum[Length[swell[c]],{c,Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Complement[#1,#2]=={}&],And[Union@@#==Range[n],clutQ[#]]&]}],{n,nn}]

A324837 Number of minimal subsets of {1...n} with least common multiple n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2019

Keywords

Comments

Note that the elements must be pairwise indivisible divisors of n.
Differs from A303838 at positions {1, 180, 210, ...}. For example, a(210) = 49, A303838(210) = 55. - Gus Wiseman, Apr 01 2019

Examples

			The a(30) = 8 subsets are: {30}, {2,15}, {3,10}, {5,6}, {6,10}, {6,15}, {10,15}, {2,3,5}.
		

Crossrefs

Programs

  • Mathematica
    minim[s_]:=Complement[s,First/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[minim[Select[Rest[stableSets[Divisors[n],Divisible]],LCM@@#==n&]]],{n,100}]

A320798 Number of non-isomorphic weight-n connected antichains of non-constant multisets with multiset density -1.

Original entry on oeis.org

0, 1, 2, 5, 9, 24, 51, 134, 328, 868
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 24 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}
          {{123}}  {{1222}}    {{12222}}    {{112222}}
                   {{1233}}    {{12233}}    {{112233}}
                   {{1234}}    {{12333}}    {{122222}}
                   {{13}{23}}  {{12344}}    {{122333}}
                               {{12345}}    {{123333}}
                               {{12}{233}}  {{123344}}
                               {{13}{233}}  {{123444}}
                               {{14}{234}}  {{123455}}
                                            {{123456}}
                                            {{112}{233}}
                                            {{122}{233}}
                                            {{12}{2333}}
                                            {{123}{344}}
                                            {{124}{344}}
                                            {{125}{345}}
                                            {{13}{2233}}
                                            {{13}{2333}}
                                            {{13}{2344}}
                                            {{133}{233}}
                                            {{14}{2344}}
                                            {{15}{2345}}
                                            {{13}{24}{34}}
                                            {{14}{24}{34}}
		

Crossrefs

A320275 Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 7, 9, 13, 19, 27, 37, 49, 53, 61, 81, 89, 91, 113, 131, 151, 169, 223, 243, 247, 251, 281, 299, 311, 343, 359, 361, 377, 427, 463, 503, 593, 611, 637, 659, 689, 703, 719, 729, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1183, 1291, 1321, 1339
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of not necessarily strict connected antichains of multisets spanning an initial interval of positive integers.

Examples

			The sequence of multisystems whose MM-numbers belong to the sequence begins:
    2: {{}}
    3: {{1}}
    7: {{1,1}}
    9: {{1},{1}}
   13: {{1,2}}
   19: {{1,1,1}}
   27: {{1},{1},{1}}
   37: {{1,1,2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   81: {{1},{1},{1},{1}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  151: {{1,1,2,2}}
  169: {{1,2},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
Previous Showing 11-20 of 42 results. Next