Original entry on oeis.org
6, 717, 398086, 135369240, 62518201350, 27027759382861, 12577742936206854, 5858597459401083456, 2795780972964509144838, 1345924404035022245534925, 655521004499800309096497414, 321708126100955273726273728024
Offset: 1
A289561
Coefficients of 1/(q*(j(q)-1728))^2 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 1968, 2511000, 2605664960, 2387651205420, 2011663789279200, 1594903822090229312, 1207416525204065938560, 881461062200198781904590, 624887481909094711741279120, 432393768184906363401468637728, 293171504960988659691658645670592
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96),
A289562 (k=-72), this sequence (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289562
Coefficients of 1/(q*(j(q)-1728))^3 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 2952, 5218884, 7138351488, 8319960432666, 8678332561127616, 8338315178481134040, 7518590274496806176256, 6444205834302869333758299, 5298802621872639665867604832, 4208666443076672300677008045636, 3246069554930472099322915758511872
Offset: 0
(q*(j(q)-1728))^(k/24):
A289563 (k=-96), this sequence (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289563
Coefficients of 1/(q*(j(q)-1728))^4 where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, 3936, 8895024, 15094625920, 21336320693400, 26506772152211520, 29887990556174431424, 31237788209244729015552, 30709242534935581933885740, 28700724444538653431660487520, 25706227251014342788669659769056, 22202613798662970539127791744222592
Offset: 0
(q*(j(q)-1728))^(k/24): this sequence (k=-96),
A289562 (k=-72),
A289561 (k=-48),
A289417 (k=-24),
A289416 (k=-1),
A106203 (k=1),
A289330 (k=2),
A289331 (k=3),
A289332 (k=4),
A289333 (k=5),
A289334 (k=6),
A007242 (k=12),
A289063 (k=24).
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(-4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
Original entry on oeis.org
264, 4152, 77064, 1551576, 33343752, 745374264, 17140046088, 402328199064, 9593786367240, 231629451811896, 5648880427214088, 138910500564007128, 3439808201626085640, 85686183717823968312, 2145402754204531455240, 53956201350487199168280
Offset: 1
Related to E_{k+2}/E_k: this sequence (k=2),
A192731 (k=4),
A289061 (k=6).
A305757
Inverse Euler transform of q*(j-720) where j is j-function (A000521).
Original entry on oeis.org
24, 196584, 16773144, -18919981056, -3292295086056, 2312547886368744, 640457437563740184, -302667453389051314176, -123005476312830648176616, 39529719620247267255853032, 23306082528463942764630528024, -4849033309391159571741461446656
Offset: 1
(1-x)^(-24) * (1-x^2)^(-196584) * (1-x^3)^(-16773144) * (1-x^4)^18919981056 * ... = 1 + 24*x + 196884*x^2 + 21493760*x^3 + 864299970*x^4 + ... .
Inverse Euler transform of q*(j+144*k): (-1)*
A192731 (k=0), this sequence (k=-5), (-1)*
A289061 (k=-12).
A289340
Coefficients of (q*(j(q)-1728))^(1/3) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, -328, -41956, -8596032, -2597408634, -916285828640, -352170121921992, -143129703441671168, -60517599938503137519, -26355020095077489965264, -11743692598044815023990588, -5329748160859504303225598464
Offset: 0
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
A289339
Coefficients of (q*(j(q)-1728))^(7/24) where j(q) is the elliptic modular invariant.
Original entry on oeis.org
1, -287, -42595, -9750370, -3081185660, -1117168154431, -438204467218406, -181018051263504195, -77584080248087108885, -34183723168674046275385, -15388633770558568711781905, -7047808475666778827478858184
Offset: 0
-
CoefficientList[Series[((256/QPochhammer[-1, x]^8 + x*QPochhammer[-1, x]^16/256)^3 - 1728*x)^(7/24), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 07 2018 *)
Comments