cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A290971 Write x/(1-x) in the form Sum_{j>=1} a(j)*x^j/(1+a(j)*x^j).

Original entry on oeis.org

1, 2, 0, 6, 0, -6, 0, 54, 0, -30, 0, -114, 0, -126, 0, 4470, 0, -294, 0, -5850, 0, -2046, 0, -92418, 0, -8190, 0, -247674, 0, 2010, 0, 30229110, 0, -131070, 0, -8200914, 0, -524286, 0, -362617770, 0, 183162, 0, -354416634, 0, -8388606, 0, -53614489794, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nn=20;-Solve[Table[Sum[a[n/d]^d,{d,Divisors[n]}]==-1,{n,nn}],Array[a,nn]][[1,All,2]]

Formula

a(n) = -Sum_t (-1)^v(t) where the sum is over all same-trees of weight n (see A281145 for definition) and v(t) is the number of nodes (branchings and leaves) in t.

A297791 Number of series-reduced leaf-balanced rooted trees with n nodes. Number of orderless same-trees with n nodes and all leaves equal to 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 3, 3, 4, 3, 5, 3, 6, 4, 6, 3, 12, 3, 10, 7, 9, 6, 12, 9, 13, 16, 14, 22, 22, 24, 21, 24, 28, 14, 32, 15, 42, 20, 60, 27, 84, 44, 100, 59, 113, 74, 116, 85, 110, 97, 96, 113, 106, 149, 147, 234, 235, 377, 380, 580, 576, 838
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2018

Keywords

Comments

An unlabeled rooted tree is leaf-balanced if all branches from the same root have the same number of leaves. It is series-reduced if all positive out-degrees are greater than one.

Examples

			The a(13) = 5 trees: (((oo)(oo))(oooo)), ((ooooo)(ooooo)), ((ooo)(ooo)(ooo)), ((oo)(oo)(oo)(oo)), (oooooooooooo).
		

Crossrefs

Programs

  • Mathematica
    alltim[n_]:=alltim[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[alltim/@c]],And[SameQ@@(Count[#,{},{0,Infinity}]&/@#),FreeQ[#,{_}]]&]]/@IntegerPartitions[n-1]];
    Table[Length[alltim[n]],{n,20}]
  • PARI
    lista(nn) = my(k, r, t, u, w=vector(nn, i, vector(i))); w[1][1]=1; for(s=2, nn, fordiv(s, d, if(dw[i][d], [d..nn]); forvec(v=vector(s/d, i, [1, #u]), if(nn>=r=1+sum(i=1, #v, u[v[i]]), k=1; t=1; for(i=2, #v, if(v[i]==v[i-1], k++, t*=binomial(w[u[v[i-1]]][d]+k-1, k); k=1)); w[r][s]+=t*binomial(w[u[v[#v]]][d]+k-1, k)), 1)))); vector(nn, i, vecsum(w[i])); \\ Jinyuan Wang, Feb 25 2025

Extensions

a(51) onward from Robert G. Wilson v, Jan 07 2018

A301343 Regular triangle where T(n,k) is the number of planted achiral (or generalized Bethe) trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 2, 1, 1, 0, 1, 3, 2, 2, 1, 1, 1, 0, 1, 4, 2, 4, 1, 2, 1, 1, 0, 1, 4, 3, 4, 1, 3, 1, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 0, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1  0
1  1  0
1  1  1  0
1  2  1  1  0
1  2  1  1  1  0
1  3  2  2  1  1  0
1  3  2  2  1  1  1  0
1  4  2  4  1  2  1  1  0
1  4  3  4  1  3  1  1  1  0
1  5  3  6  2  4  1  2  1  1  0
The T(9,4) = 4 planted achiral trees: (((((oooo))))), ((((oo)(oo)))), (((oo))((oo))), ((o)(o)(o)(o)).
		

Crossrefs

Row sums are A003238. A version without the zeroes or first row is A214575.

Programs

  • Mathematica
    tri[n_,k_]:=If[k===1,1,If[k>=n,0,Sum[tri[n-k,d],{d,Divisors[k]}]]];
    Table[tri[n,k],{n,10},{k,n}]

Formula

T(n,1) = 1, T(n,k) = 0 if n <= k, otherwise T(n,k) = Sum_{d|k} T(n - k, d).

A300647 Number of same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 10, 2, 2, 2, 2, 2, 42, 1, 2, 10, 2, 2, 138, 2, 2, 2, 34, 2, 1514, 2, 2, 42, 2, 1, 2058, 2, 162, 10, 2, 2, 8202, 2, 2, 138, 2, 2, 207370, 2, 2, 2, 130, 34, 131082, 2, 2, 1514, 2082, 2, 524298, 2, 2, 42, 2, 2, 14725738, 1, 8226, 2058, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 10 odd same-trees:
9,
(333),
(33(111)), (3(111)3), ((111)33)
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1+sumdiv(n, d, if ((d > 1) && (d % 2), a(n/d)^d))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A290973 Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1).

Original entry on oeis.org

-2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2017

Keywords

Examples

			2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n/d-1-a(d), n/d), d=
            numtheory[divisors](n) minus {n})-2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 27 2017
  • Mathematica
    nn=60;
    rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1,{n,nn}],{x,0,nn}]],x];
    Array[a,nn]/.First[rus]

Formula

For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d).

A317099 Number of series-reduced planted achiral trees whose leaves span an initial interval of positive integers appearing with multiplicities an integer partition of n.

Original entry on oeis.org

1, 3, 4, 9, 8, 19, 16, 35, 35, 54, 57, 113, 102, 155, 189, 279, 298, 447, 491, 702, 813, 1063, 1256, 1759, 1967, 2542, 3050, 3902, 4566, 5882, 6843, 8676, 10205, 12612, 14908, 18608, 21638, 26510, 31292, 38150, 44584, 54185, 63262, 76308, 89371, 106818, 124755
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

In these trees, achiral means that all branches directly under any given node that is not a leaf or a cover of leaves are equal, and series-reduced means that every node that is not a leaf or a cover of leaves has at least two branches.

Examples

			The a(4) = 9 trees:
  (1111), ((11)(11)), (((1)(1))((1)(1))), ((1)(1)(1)(1)),
  (1112),
  (1122), ((12)(12)),
  (1123),
  (1234).
The a(6) = 19 trees:
  (111111), ((111)(111)), (((1)(1)(1))((1)(1)(1))), ((11)(11)(11)), (((1)(1))((1)(1))((1)(1))), ((1)(1)(1)(1)(1)(1)),
  (111112),
  (111122), ((112)(112)),
  (111123),
  (111222), ((12)(12)(12)),
  (111223),
  (111234),
  (112233), ((123)(123)),
  (112234),
  (112345),
  (123456).
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=1+Sum[b[n/d],{d,Rest[Divisors[n]]}];
    a[n_]:=Sum[b[GCD@@Length/@Split[ptn]],{ptn,IntegerPartitions[n]}];
    Array[a,30]

A300648 Number of orderless same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 12, 1, 2, 6, 2, 2, 14, 2, 2, 2, 8, 2, 68, 2, 2, 12, 2, 1, 18, 2, 16, 6, 2, 2, 20, 2, 2, 14, 2, 2, 644, 2, 2, 2, 10, 8, 24, 2, 2, 68, 20, 2, 26, 2, 2, 12, 2, 2, 1386, 1, 22, 18, 2, 2, 30, 16, 2, 6, 2, 2, 4532, 2, 22, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 6 odd orderless same-trees: 9, (333), (33(111)), (3(111)(111)), ((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[Binomial[a[n/d]+d-1,d],{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1 + sumdiv(n, d, if ((d > 1) && (d % 2), binomial(a(n/d) + d - 1, d)))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d binomial(a(n/d) + d - 1, d) where the sum is over odd divisors of n greater than 1.

A317100 Number of series-reduced planted achiral trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 3, 5, 12, 17, 41, 65, 144, 262, 533, 1025, 2110, 4097, 8261, 16407, 32928, 65537, 131384, 262145, 524854, 1048647, 2098181, 4194305, 8390924, 16777234, 33558533, 67109132, 134226070, 268435457, 536887919, 1073741825, 2147516736, 4294968327, 8590000133
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

In these trees, achiral means that all branches directly under any given node that is not a leaf or a cover of leaves are equal, and series-reduced means that every node that is not a leaf or a cover of leaves has at least two branches.

Examples

			The a(4) = 12 trees:
  (1111), ((11)(11)), (((1)(1))((1)(1))), ((1)(1)(1)(1)),
  (1222),
  (1122), ((12)(12)),
  (1112),
  (1233),
  (1223),
  (1123),
  (1234).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    b[n_]:=1+Sum[b[n/d],{d,Rest[Divisors[n]]}];
    a[n_]:=Sum[b[GCD@@Length/@Split[ptn]],{ptn,allnorm[n]}];
    Array[a,10]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=2^(n-1) + sumdiv(n, d, v[d])); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 07 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

A298537 Number of unlabeled rooted trees with n nodes such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 25, 49, 127, 291, 766, 1843, 5003, 12487, 34151, 87983, 242088, 634848, 1763749, 4688677, 13085621, 35241441, 98752586, 268282856, 755353825, 2067175933, 5837592853, 16087674276, 45550942142, 126186554309, 358344530763, 997171512999
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 6 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), ((o)(o)), (oooo).
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=r[n]=If[n===1,1,Sum[Product[Binomial[r[x]+Count[ptn,x]-1,Count[ptn,x]],{x,Union[ptn]}],{ptn,IntegerPartitions[n-1]}]];
    Table[If[n===1,1,Sum[Binomial[r[(n-1)/d]+d-1,d],{d,Divisors[n-1]}]],{n,40}]

Formula

a(n + 1) = Sum_{d|n} binomial(A000081(n/d) + d - 1, d).

A300649 Number of same-trees of weight 2n + 1 in which all outdegrees are odd and all leaves greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 10, 1, 1, 3, 3, 1, 3, 1, 1, 62, 1, 2, 3, 1, 3, 3, 1, 1, 158, 3, 1, 3, 1, 1, 254, 3, 1, 1514, 1, 3, 3, 1, 3, 3, 3, 1, 2078, 1, 1, 2461, 1, 1, 3, 1, 3, 8222, 3, 2, 3, 34, 1, 3, 1, 3, 390782, 1, 1, 3, 3, 3, 2198, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(13) = 10 odd same-trees with all leaves greater than 1:
27,
(999),
(99(333)), (9(333)9), ((333)99),
(9(333)(333)), ((333)9(333)), ((333)(333)9),
((333)(333)(333)), (333333333).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}]];
    Table[a[n],{n,1,100,2}]
  • PARI
    f(n) = if (n==1, 1, sumdiv(n, d, if ((d > 1) && (d % 2), f(n/d)^d)));
    a(n) = f(2*n+1); \\ Michel Marcus, Mar 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.
Previous Showing 11-20 of 27 results. Next