cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 82 results. Next

A300353 Number of strict trees of weight n with odd leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 4, 7, 14, 24, 46, 92, 186, 368, 750, 1529, 3160, 6510, 13590, 28374, 59780, 125732, 266468, 564188, 1202842, 2560106, 5484304, 11732400, 25229068, 54187918, 116938702, 252039411, 545593378, 1179545874, 2560009400, 5550315640, 12075064432
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

This sequence is initially dominated by A300352 but eventually becomes much greater.
A strict tree of weight n > 0 is either a single node of weight n, or a sequence of two or more strict trees with strictly decreasing weights summing to n.

Examples

			The a(8) = 7 strict trees with odd leaves: (71), (53), (((51)1)1), (((31)3)1), (((31)1)3), ((31)31), (((((31)1)1)1)1).
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=d[n]=If[EvenQ[n],0,1]+Sum[Times@@d/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&UnsameQ@@#&]}];
    Table[d[n],{n,40}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = polcoef(x/(1-x^2) + prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 25 2018

Formula

O.g.f: (1 + x/(1-x^2) + Product_{i>0} (1 + a(i)x^i))/2.
a(n) = Sum_{i=1..A000009(n)} A294018(A300351(n,i)).

A300354 Number of enriched p-trees of weight n with distinct leaves.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 8, 8, 13, 17, 54, 56, 98, 125, 195, 500, 606, 921, 1317, 1912, 2635, 6667, 7704, 12142, 16958, 24891, 33388, 47792, 106494, 126475, 195475, 268736, 393179, 523775, 750251, 979518, 2090669, 2457315, 3759380, 5066524, 7420874, 9726501, 13935546
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(6) = 8 enriched p-trees with distinct leaves: 6, (42), (51), ((31)2), ((32)1), (3(21)), ((21)3), (321).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    ept[q_]:=ept[q]=If[Length[q]===1,1,Total[Times@@@Map[ept,Join@@Function[sptn,Join@@@Tuples[Permutations/@GatherBy[sptn,Total]]]/@Select[sps[q],Length[#]>1&],{2}]]];
    Table[Total[ept/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,30}]

Formula

a(n) = Sum_{i=1..A000009(n)} A299203(A246867(n,i)).

A300355 Number of enriched p-trees of weight n with odd leaves.

Original entry on oeis.org

1, 1, 1, 3, 6, 16, 47, 132, 410, 1254, 4052, 12818, 42783, 139082, 469924, 1563606, 5353966, 18065348, 62491018, 213391790, 743836996, 2565135934, 8994087070, 31251762932, 110245063771, 385443583008, 1365151504722, 4800376128986, 17070221456536, 60289267885410
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(5) = 16 enriched p-trees of weight with odd leaves:
5,
((31)1), ((((11)1)1)1), (((111)1)1), (((11)(11))1), (((11)11)1), ((1111)1),
(3(11)), (((11)1)(11)), ((111)(11)),
(311), (((11)1)11), ((111)11),
((11)(11)1),
((11)111),
(11111).
		

Crossrefs

Programs

  • Mathematica
    c[n_]:=c[n]=If[EvenQ[n],0,1]+Sum[Times@@c/@y,{y,Select[IntegerPartitions[n],Length[#]>1&]}];
    Table[c[n],{n,30}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = n%2 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f: (1 + x/(1-x^2) + Prod_{i>0} 1/(1 - a(i)x^i))/2.
a(n) = Sum_{i=1..A000009(n)} A299203(A300351(n,i)).

A320331 Number of strict T_0 multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 30, 61, 110, 207, 381, 711, 1250
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			The a(1) = 1 through a(5) = 17 multiset partitions:
  {{1}}  {{2}}    {{3}}        {{4}}          {{5}}
         {{1,1}}  {{1,1,1}}    {{2,2}}        {{1,1,3}}
                  {{1},{2}}    {{1,1,2}}      {{1,2,2}}
                  {{1},{1,1}}  {{1},{3}}      {{1},{4}}
                               {{1,1,1,1}}    {{2},{3}}
                               {{1},{1,2}}    {{1,1,1,2}}
                               {{2},{1,1}}    {{1},{1,3}}
                               {{1},{1,1,1}}  {{1},{2,2}}
                                              {{2},{1,2}}
                                              {{3},{1,1}}
                                              {{1,1,1,1,1}}
                                              {{1},{1,1,2}}
                                              {{1,1},{1,2}}
                                              {{2},{1,1,1}}
                                              {{1},{1,1,1,1}}
                                              {{1,1},{1,1,1}}
                                              {{1},{2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[UnsameQ@@#,UnsameQ@@dual[#]]&]],{n,8}]

A290262 Irregular triangle read by rows: rows give the (negated) nonzero coefficients of t in each term of the inverse power product expansion of 1 - t * x/(1-x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 2, 1, 3, 5, 5, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 5, 14, 25, 30, 24, 12, 3, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 21, 48, 75, 81, 60, 30, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Row sums are A290261(n). A regular version is A290320.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,
  1,  2,  2,  1;
  1,  2,  2,  1;
  1,  3,  4,  2;
  1,  3,  5,  5,  3,  1;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  4,  9, 13, 13,  9,  4,  1;
  1,  5, 14, 25, 30, 24, 12,  3;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1;
  1,  6, 21, 48, 75, 81, 60, 30, 10,  2;
		

Crossrefs

Programs

  • Mathematica
    eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@y],{y,Rest[IntegerPartitions[n]]}],n];
    eptrans[a_][n_]:=Sum[(-1)^Count[tree,_List,{0,Infinity}]*Product[a[i],{i,Flatten[{tree}]}],{tree,eptrees[n]}];
    Table[DeleteCases[CoefficientList[-eptrans[-t&][n],t],0],{n,12}]

A300647 Number of same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 10, 2, 2, 2, 2, 2, 42, 1, 2, 10, 2, 2, 138, 2, 2, 2, 34, 2, 1514, 2, 2, 42, 2, 1, 2058, 2, 162, 10, 2, 2, 8202, 2, 2, 138, 2, 2, 207370, 2, 2, 2, 130, 34, 131082, 2, 2, 1514, 2082, 2, 524298, 2, 2, 42, 2, 2, 14725738, 1, 8226, 2058, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 10 odd same-trees:
9,
(333),
(33(111)), (3(111)3), ((111)33)
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1+sumdiv(n, d, if ((d > 1) && (d % 2), a(n/d)^d))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A300863 Signed recurrence over enriched p-trees: a(n) = (-1)^(n - 1) + Sum_{y1 + ... + yk = n, y1 >= ... >= yk > 0, k > 1} a(y1) * ... * a(yk).

Original entry on oeis.org

1, 0, 2, 2, 6, 14, 34, 82, 214, 566, 1482, 4058, 10950, 30406, 83786, 235714, 658286, 1874254, 5293674, 15189810, 43312542, 125075238, 359185586, 1043712922, 3015569582, 8800146182, 25565402802, 74918274562, 218572345718, 642783954238, 1882606578002
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&]}];
    Array[a,40]

Formula

O.g.f.: (-1/(1+x) + Product 1/(1-a(n)x^n))/2.

A290973 Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1).

Original entry on oeis.org

-2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2017

Keywords

Examples

			2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n/d-1-a(d), n/d), d=
            numtheory[divisors](n) minus {n})-2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 27 2017
  • Mathematica
    nn=60;
    rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1,{n,nn}],{x,0,nn}]],x];
    Array[a,nn]/.First[rus]

Formula

For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d).

A294079 Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers.

Original entry on oeis.org

0, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, 0, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 1, 1, 2, 1, -1, 1, 1, -1, 2, 1, 1, 0, -1, 1, -2, -1, -1, -1, -1, 1, -3, -1
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qmu[y_]:=qmu[y]=If[Length[y]===1,1,-Sum[Times@@qmu/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@#]&]}]];
    qmu/@ptns

Formula

mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all strict trees (A273873) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t.

A295632 Write 1/Product_{n > 1}(1 - 1/n^s) in the form Product_{n > 1}(1 + a(n)/n^s).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Nov 24 2017

Keywords

Comments

First negative entry is a(1024) = -4.

Crossrefs

Programs

  • Mathematica
    nn=100;
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Solve[Table[Length[facs[n]]==Sum[Times@@a/@f,{f,Select[facs[n],UnsameQ@@#&]}],{n,2,nn}],Table[a[n],{n,2,nn}]][[1,All,2]]
Previous Showing 41-50 of 82 results. Next