cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A303546 Number of non-isomorphic aperiodic multiset partitions of weight n.

Original entry on oeis.org

1, 3, 9, 29, 90, 285, 909, 2984, 9935, 34113, 119368, 428923, 1574223, 5915235, 22699730, 89000042, 356058539, 1453069854, 6044132793, 25612564200, 110503626702, 485161228675, 2166488899641, 9835209480533, 45370059225227
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime. For this sequence neither the parts nor their multiset union are required to be aperiodic, only the multiset of parts.

Examples

			Non-isomorphic representatives of the a(3) = 9 aperiodic multiset partitions are:
  {{1,1,1}}, {{1,2,2}}, {{1,2,3}},
  {{1},{1,1}}, {{1},{2,2}}, {{1},{2,3}}, {{2},{1,2}},
  {{1},{2},{2}}, {{1},{2},{3}}.
		

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d) * A007716(n/d).

A303837 Number of z-trees with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. Then a z-tree is a finite connected set of pairwise indivisible positive integers greater than 1 with clutter density -1.
This is a generalization to multiset systems of the usual definition of hypertree (viz. connected hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A030019(k).

Examples

			The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
      (72): {{1,1,1,2,2}}
    (8,18): {{1,1,1},{1,2,2}}
    (8,36): {{1,1,1},{1,1,2,2}}
    (9,24): {{2,2},{1,1,1,2}}
   (6,8,9): {{1,2},{1,1,1},{2,2}}
  (8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
       (60): {{1,1,2,3}}
     (4,30): {{1,1},{1,2,3}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]

A305000 Number of labeled antichains of finite sets spanning some subset of {1,...,n} with singleton edges allowed.

Original entry on oeis.org

1, 2, 8, 72, 1824, 220608, 498243968, 309072306743552, 14369391925598802012151296, 146629927766168786239127150948525247729660416
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.
Number of non-degenerate unate Boolean functions of n or fewer variables. - Aniruddha Biswas, May 11 2024

Examples

			The a(2) = 8 antichains:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Binomial transform of A304999.
Inverse binomial transform of A245079. - Aniruddha Biswas, May 11 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 11 2024

A304118 Number of z-blobs with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.
If n is squarefree with k prime factors, then a(n) = A275307(k).

Examples

			The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.
        (60): {{1,1,2,3}}
     (12,30): {{1,1,2},{1,2,3}}
     (20,30): {{1,1,3},{1,2,3}}
   (6,15,20): {{1,2},{2,3},{1,1,3}}
  (10,12,15): {{1,3},{1,1,2},{2,3}}
  (12,15,20): {{1,1,2},{2,3},{1,1,3}}
  (12,20,30): {{1,1,2},{1,1,3},{1,2,3}}
The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.
       (120): {{1,1,1,2,3}}
     (24,30): {{1,1,1,2},{1,2,3}}
     (24,60): {{1,1,1,2},{1,1,2,3}}
     (30,40): {{1,2,3},{1,1,1,3}}
     (40,60): {{1,1,1,3},{1,1,2,3}}
   (6,15,40): {{1,2},{2,3},{1,1,1,3}}
  (10,15,24): {{1,3},{2,3},{1,1,1,2}}
  (12,15,40): {{1,1,2},{2,3},{1,1,1,3}}
  (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}
  (15,20,24): {{2,3},{1,1,3},{1,1,1,2}}
  (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}
  (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}
  (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}
  (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]];
    zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]];
    zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}];
    zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}]

A304887 Number of non-isomorphic blobs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 8, 14
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch. The weight of a blob is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A275307).

Examples

			Non-isomorphic representatives of the a(8) = 8 blobs are the following:
  {{1,2,3,4,5,6,7,8}}
  {{1,5,6},{2,3,4,5,6}}
  {{1,2,5,6},{3,4,5,6}}
  {{1,3,4,5},{2,3,4,5}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,4},{1,5},{2,3,4,5}}
  {{2,4},{1,2,5},{3,4,5}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

A304912 Number of non-isomorphic spanning hyperforests of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 29, 56, 97, 186, 337, 657, 1238, 2442, 4768, 9569, 19174, 39151, 80154, 166211, 346239, 727853, 1537611, 3270710, 6989669, 15018389, 32405378, 70230238, 152772075, 333552711, 730632928, 1605459844, 3537861659, 7817447580, 17317397837
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A spanning hyperforest is an antichain of finite nonempty sets, which cover a set of n vertices, whose connected components are hypertrees (see A304867). The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A134957).

Examples

			The a(6) = 18 spanning hyperforests are the following:
  {{1,2,3,4,5,6}}
  {{1},{2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1},{2},{3,4,5,6}}
  {{1},{2,3},{4,5,6}}
  {{1},{2,5},{3,4,5}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{4,5,6}}
  {{1},{2},{3,4},{5,6}}
  {{1},{2},{3,5},{4,5}}
  {{1},{2},{3},{4},{5,6}}
  {{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
    c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
    seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]& // Rest // EulerT // Prepend[#, 1]&];
    seq[36] (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    c(n)={my(v=[1]); for(i=2, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
    seq(n)={my(u=c(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*(Ser(u) - 1)+ O(x*x^n))))} \\ Andrew Howroyd, Aug 29 2018

Formula

Euler transform of A304867.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018

A303838 Number of z-forests with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1.
This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A134954(k).
Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49.

Examples

			The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
       (60): {{1,1,2,3}}
     (3,20): {{2},{1,1,3}}
     (4,15): {{1,1},{2,3}}
     (4,30): {{1,1},{1,2,3}}
     (5,12): {{3},{1,1,2}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
    (3,4,5): {{2},{1,1},{3}}
   (3,4,10): {{2},{1,1},{1,3}}
    (4,5,6): {{1,1},{3},{1,2}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]

A304911 Number of labeled hyperforests spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 4, 32, 351, 5057, 90756, 1956971, 49366904, 1427680932, 46590895869, 1694163054597, 67938488277050, 2978980898086377, 141801848209013050, 7282651452378019772, 401410357608479625207, 23635996827115264290005
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Examples

			The a(3) = 4 hyperforests are {{1,2,3}}, {{1,3},{2,3}}, {{1,2},{2,3}}, {{1,2},{1,3}}.
		

Crossrefs

Formula

E.g.f.: exp(A030019(x) - x - 1) where A030019(x) is the e.g.f. of A030019.

A304717 Number of connected strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 9, 5, 9, 8, 13, 10, 15, 9, 15, 13, 18, 14, 22, 21, 26, 19, 29, 24, 36, 31, 40, 35, 45, 38, 54, 55, 59, 55, 70, 69, 84, 74, 89, 86, 107, 103, 119, 115, 143, 143, 159
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(34) = 13 connected strict integer partitions with pairwise indivisible parts are (34), (18,16), (20,14), (22,12), (24,10), (26,8), (28,6), (30,4), (14,12,8), (15,10,9), (20,8,6), (14,10,6,4), (15,9,6,4). Their corresponding multiset multisystems (see A112798, A302242) are the following.
         (34): {{1,7}}
       (30 4): {{1,2,3},{1,1}}
       (28 6): {{1,1,4},{1,2}}
       (26 8): {{1,6},{1,1,1}}
      (24 10): {{1,1,1,2},{1,3}}
      (22 12): {{1,5},{1,1,2}}
      (20 14): {{1,1,3},{1,4}}
     (20 8 6): {{1,1,3},{1,1,1},{1,2}}
      (18 16): {{1,2,2},{1,1,1,1}}
    (15 10 9): {{2,3},{1,3},{2,2}}
   (15 9 6 4): {{2,3},{2,2},{1,2},{1,1}}
    (14 12 8): {{1,4},{1,1,2},{1,1,1}}
  (14 10 6 4): {{1,4},{1,3},{1,2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,30}]

A303547 Number of non-isomorphic periodic multiset partitions of weight n.

Original entry on oeis.org

0, 1, 1, 4, 1, 13, 1, 33, 10, 94, 1, 327, 1, 913, 100, 3017, 1, 10233, 1, 34236, 919, 119372, 1, 432234, 91, 1574227, 9945, 5916177, 1, 22734231, 1, 89003059, 119378, 356058543, 1000, 1453509039, 1, 6044132797, 1574233, 25612601420, 1, 110509543144, 1, 485161348076
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is periodic if its multiplicities have a common divisor greater than 1. For this sequence neither the parts nor their multiset union are required to be periodic, only the multiset of parts.

Examples

			Non-isomorphic representatives of the a(4) = 4 multiset partitions are {{1,1},{1,1}}, {{1,2},{1,2}}, {{1},{1},{1},{1}}, {{1},{1},{2},{2}}.
		

Crossrefs

Formula

a(n) = 1 if n is prime.
a(n) = A007716(n) - A303546(n).

Extensions

More terms from Jinyuan Wang, Jun 21 2020
Previous Showing 11-20 of 46 results. Next