cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A300354 Number of enriched p-trees of weight n with distinct leaves.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 8, 8, 13, 17, 54, 56, 98, 125, 195, 500, 606, 921, 1317, 1912, 2635, 6667, 7704, 12142, 16958, 24891, 33388, 47792, 106494, 126475, 195475, 268736, 393179, 523775, 750251, 979518, 2090669, 2457315, 3759380, 5066524, 7420874, 9726501, 13935546
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(6) = 8 enriched p-trees with distinct leaves: 6, (42), (51), ((31)2), ((32)1), (3(21)), ((21)3), (321).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    ept[q_]:=ept[q]=If[Length[q]===1,1,Total[Times@@@Map[ept,Join@@Function[sptn,Join@@@Tuples[Permutations/@GatherBy[sptn,Total]]]/@Select[sps[q],Length[#]>1&],{2}]]];
    Table[Total[ept/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,30}]

Formula

a(n) = Sum_{i=1..A000009(n)} A299203(A246867(n,i)).

A381637 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks with distinct sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 5, 1, 2, 2, 4, 2, 5, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 5, 1, 5, 2, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are {1,1,2,4}, with 7 multiset partitions into blocks with distinct sums:
  {{1,1,2,4}}
  {{1},{1,2,4}}
  {{2},{1,1,4}}
  {{1,1},{2,4}}
  {{1,2},{1,4}}
  {{1},{2},{1,4}}
  {{1},{4},{1,2}}
with block-sums: {8}, {1,7}, {2,6}, {2,6}, {3,5}, {1,2,5}, {1,3,4}, of which 6 are distinct, so a(84) = 6.
		

Crossrefs

Allowing any block-sums gives A317141 (lower A300383), before sums A001055.
Before taking sums we had A321469.
For distinct blocks instead of distinct block-sums we have A381452.
If each block is a set we have A381634 (zeros A381806), before sums A381633.
For equal instead of distinct block-sums we have A381872, before sums A321455.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For set multipartitions (A050320) see A381078 (upper), A381454 (lower).
- For sets of constant multisets (A050361) see A381715.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@Total/@#&]]],{n,100}]

A357979 Second MTF-transform of A000041. Replace prime(k) with prime(A357977(k)) in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 31, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 59, 32, 33, 62, 35, 36, 37, 38, 39, 40, 127, 42, 79, 44, 45, 46, 47, 48, 49, 50, 93, 52, 53, 54, 55, 56, 57, 58, 211, 60, 61, 118, 63, 64, 65, 66
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the MTF-transform as applying a function horizontally along a number's prime indices; see the Mathematica program.

Examples

			We have:
- 51 = prime(2) * prime(7),
- A357977(2) = 2,
- A357977(7) = 11,
- a(51) = prime(2) * prime(11) = 93.
		

Crossrefs

Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
Applying the transformation only once gives A357977, strict A357978.
For primes instead of partition numbers we have A357983.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
    Array[mtf[mtf[PartitionsP]],100]

A294079 Strict Moebius function of the multiorder of integer partitions indexed by Heinz numbers.

Original entry on oeis.org

0, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 1, 1, -1, -1, 0, 1, 1, 1, 1, -1, -1, 1, -1, 0, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 1, 0, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 1, 0, -1, 2, 1, 1, -1, 1, 1, 2, 1, -1, 1, 1, -1, 2, 1, 1, 0, -1, 1, -2, -1, -1, -1, -1, 1, -3, -1
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qmu[y_]:=qmu[y]=If[Length[y]===1,1,-Sum[Times@@qmu/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@#]&]}]];
    qmu/@ptns

Formula

mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all strict trees (A273873) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t.

A317143 In the ranked poset of integer partitions ordered by refinement, row n lists the Heinz numbers of integer partitions finer (less) than or equal to the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 8, 6, 8, 7, 9, 10, 12, 16, 8, 9, 12, 16, 10, 12, 16, 11, 14, 15, 18, 20, 24, 32, 12, 16, 13, 21, 22, 25, 27, 28, 30, 36, 40, 48, 64, 14, 18, 20, 24, 32, 15, 18, 20, 24, 32, 16, 17, 26, 33, 35, 42, 44, 45, 50, 54, 56, 60, 72, 80, 96, 128
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
If x and y are partitions of the same integer and it is possible to produce x by further partitioning the parts of y, flattening, and sorting, then x <= y.

Examples

			The partitions finer than or equal to (2,2) are (2,2), (2,1,1), (1,1,1,1), with Heinz numbers 9, 12, 16, so the 9th row is {9, 12, 16}.
Triangle begins:
   1
   2
   3   4
   4
   5   6   8
   6   8
   7   9  10  12  16
   8
   9  12  16
  10  12  16
  11  14  15  18  20  24  32
  12  16
  13  21  22  25  27  28  30  36  40  48  64
  14  18  20  24  32
  15  18  20  24  32
  16
  17  26  33  35  42  44  45  50  54  56  60  72  80  96 128
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Union[Times@@@Map[Prime,Join@@@Tuples[IntegerPartitions/@primeMS[n]],{2}]],{n,12}]

A387133 Number of ways to choose a sequence of distinct integer partitions, one of each prime factor of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 2, 7, 6, 15, 0, 6, 14, 56, 6, 101, 30, 21, 0, 297, 12, 490, 14, 45, 112, 1255, 0, 42, 202, 6, 30, 4565, 42, 6842, 0, 168, 594, 105, 12, 21637, 980, 303, 0, 44583, 90, 63261, 112, 42, 2510, 124754, 0, 210, 84, 891, 202, 329931, 12, 392, 0, 1470, 9130
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2025

Keywords

Examples

			The prime factors of 9 are (3,3), and the a(9) = 6 choices are:
  ((3),(2,1))
  ((3),(1,1,1))
  ((2,1),(3))
  ((2,1),(1,1,1))
  ((1,1,1),(3))
  ((1,1,1),(2,1))
		

Crossrefs

For prime factors instead of partitions we have A008966, see A355741.
Twice partitions of this type are counted by A296122.
For prime indices instead of factors we have A387110, see A387136.
For strict partitions and prime indices we have A387115.
For constant partitions and prime indices we have A387120.
Positions of zero are A387326, for indices apparently A276079 (complement A276078).
Allowing repeated partitions gives A387327, see A299200, A357977.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions/@Flatten[ConstantArray@@@FactorInteger[n]]],UnsameQ@@#&]],{n,30}]

A119442 Triangle read by rows: row n lists number of unordered partitions of n into k parts which are partition numbers (members of A000041).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 7, 2, 1, 7, 11, 7, 2, 1, 11, 26, 19, 7, 2, 1, 15, 40, 38, 19, 7, 2, 1, 22, 83, 78, 54, 19, 7, 2, 1, 30, 120, 168, 102, 54, 19, 7, 2, 1, 42, 223, 301, 244, 134, 54, 19, 7, 2, 1, 56, 320, 557, 471, 292, 134, 54, 19, 7, 2, 1, 77, 566, 1035, 1000, 623, 356, 134, 54
Offset: 0

Views

Author

Alford Arnold, May 19 2006

Keywords

Comments

A060642 describes the ordered case.
Number of twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. - Gus Wiseman, Mar 23 2018

Examples

			Triangle begins:
   1
   2   1
   3   2   1
   5   7   2   1
   7  11   7   2   1
  11  26  19   7   2   1
  15  40  38  19   7   2   1
  22  83  78  54  19   7   2   1
  30 120 168 102  54  19   7   2   1
  42 223 301 244 134  54  19   7   2   1
  56 320 557 471 292 134  54  19   7   2   1
The T(5,3) = 7 twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(2)(1), (11)(11)(1). - _Gus Wiseman_, Mar 23 2018
		

Crossrefs

Programs

  • Mathematica
    nn=12;
    ser=Product[1/(1-PartitionsP[n]x^n y),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n},{y,0,k}],{n,nn},{k,n}] (* Gus Wiseman, Mar 23 2018 *)

Formula

G.f.: 1/Product_{k>0} (1-y*A000041(k)*x^k). - Vladeta Jovovic, May 21 2006

Extensions

More terms and better definition from Vladeta Jovovic, May 21 2006

A294019 Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(108) = 8 same-trees: ((22)(2(11))), ((22)((11)2)), ((2(11))(22)), (((11)2)(22)), (222(11)), (22(11)2), (2(11)22), ((11)222).
From _Antti Karttunen_, Sep 22 2018: (Start)
For 12 = prime(1)^2 * prime(2)^1, we have the following two cases: 2(11) and (11)2, thus a(12) = 2.
For 36 = prime(1)^2 * prime(2)^2, we have the following cases: (11)22, 2(11)2, 22(11), thus a(36) = 3.
For 144  = prime(1)^4 * prime(2)^2, we have the following 14 cases: (1111)(22), (22)(1111); ((11)(11))(22), (22)((11)(11)); (11)(11)22, (11)2(11)2, (11)22(11), 2(11)2(11), 2(11)(11)2, 22(11)(11); ((11)2)(11(2)), ((11)2)(2(11)), (2(11))((11)2), (2(11))(2(11)), thus a(144) = 14.
For n = 8775 = 3^3 * 5^2 * 13^1 = prime(2)^3 * prime(3)^2 * prime(6)^1, we have the following six cases: (222)(33)6, (222)6(33), (33)(222)6, (33)6(222), 6(222)(33), 6(33)(222), thus a(8775) = 6.
(End)
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]];
    qci/@ptns
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    productifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294019(v[i]))); (m));
    A294019aux(n, m, facs) = if(1==n, productifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294019aux(n/d, m, newfacs))); (s));
    A294019(n) = if(1==n,0,if(isprime(n),1,A294019aux(n, n-1, List([]))));
    \\ A memoized implementation:
    map294019 = Map();
    A294019(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294019,n), mapget(map294019,n), my(v=A294019aux(n, n-1, List([]))); mapput(map294019,n,v); (v)))); \\ Antti Karttunen, Sep 22 2018

Formula

A281145(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).
a(p^n) = A006241(n) for any prime p and exponent n >= 1. - Antti Karttunen, Sep 22 2018

A387180 Numbers of which it is not possible to choose a different constant integer partition of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

First differs from A276079 in having 125.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers n with at least one prime index k such that the multiplicity of prime(k) in the prime factorization of n exceeds the number of divisors of k.

Examples

			The prime indices of 60 are {1,1,2,3}, and we have the following 4 choices of constant partitions:
  ((1),(1),(2),(3))
  ((1),(1),(2),(1,1,1))
  ((1),(1),(1,1),(3))
  ((1),(1),(1,1),(1,1,1))
Since none of these is strict, 60 is in the sequence.
The prime indices of 90 are {1,2,2,3}, and we have the following 4 strict choices:
  ((1),(2),(1,1),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(3))
  ((1),(1,1),(2),(1,1,1))
So 90 is not in the sequence.
		

Crossrefs

For prime factors instead of constant partitions we have A355529, counted by A370593.
For divisors instead of constant partitions we have A355740, counted by A370320.
The complement for prime factors is A368100, counted by A370592.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873.
For initial intervals instead of partitions we have A387113, counted by A387118.
These are the positions of zero in A387120.
For strict instead of constant partitions we have A387176, counted by A387137.
The complement for strict partitions is A387177, counted by A387178.
Twice-partitions of this type are counted by A387179, constant-block case of A296122.
The complement is A387181 (nonzeros of A387120), counted by A387330.
Partitions of this type are counted by A387329.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]

A301367 Regular triangle where T(n,k) is the number of orderless same-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 4, 4, 3, 5, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 2, 1, 1, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 4, 5, 10, 11, 14, 12, 14, 7, 13, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all the same and sum to n.

Examples

			Triangle begins:
1
1   1
1   0   1
1   1   1   2
1   0   0   0   1
1   1   1   2   1   3
1   0   0   0   0   0   1
1   1   1   3   4   4   3   5
1   0   1   0   1   0   1   0   2
1   1   0   0   1   2   1   1   1   3
1   0   0   0   0   0   0   0   0   0   1
1   1   2   4   5  10  11  14  12  14   7  13
1   0   0   0   0   0   0   0   0   0   0   0   1
1   1   0   0   0   0   1   2   1   1   1   1   1   3
The T(8,5) = 4 orderless same-trees: (4((11)(11))), (4(1111)), ((22)(2(11))), (222(11)).
		

Crossrefs

Programs

  • Mathematica
    olstrees[n_]:=Prepend[Join@@Table[Select[Tuples[olstrees/@ptn],OrderedQ],{ptn,Select[IntegerPartitions[n],Length[#]>1&&SameQ@@#&]}],n];
    Table[Length[Select[olstrees[n],Count[#,_Integer,{-1}]===k&]],{n,14},{k,n}]
  • PARI
    S(g, k)={polcoef(exp(sum(i=1, k, x^i*subst(g, y, y^i)/i) + O(x*x^k)), k)}
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sumdiv(n, d, S(v[n/d], d))); apply(p -> Vecrev(p/y), v)}
    { my(v=A(16)); for(n=1, #v, print(v[n])) } \\ Andrew Howroyd, Aug 20 2018
Previous Showing 21-30 of 33 results. Next