cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A299638 Solution (c(n)) of the system of 5 complementary equations in Comments.

Original entry on oeis.org

3, 7, 12, 16, 20, 24, 29, 33, 37, 41, 46, 50, 54, 58, 63, 67, 71, 75, 80, 84, 88, 92, 97, 101, 105, 109, 113, 118, 122, 126, 131, 135, 139, 143, 148, 152, 156, 160, 165, 169, 173, 177, 182, 186, 190, 194, 199, 203, 207, 211, 216, 220, 224, 228, 233, 237, 241
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = least new;
e(n) = a(n) + b(n) + c(n) + d(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 17n - 11 - 4 a(n) <= 4
0 <= 17n - 7 - 4 b(n) <= 4
0 <= 17n - 3 - 4 c(n) <= 3
0 <= 17n + 1 - 4 d(n) <= 3
0 <= 17n - 5 - e(n) <= 3
***
The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).

Examples

			n:   0  1   2    3   4   5   6   7   8   9
a:   1  5   9   14  18  22  27  31  35  39
b:   2  6   11  15  19  23  28  32  36  40
c:   3  7   12  16  20  24  29  33  37  41
d:   4  8   13  17  21  25  30  34  38  42
e:  10  26  45  62  78  94 114 130 146 162
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,
    Last[a] + Last[b] + Last[c] + Last[d]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];
    Take[a, 100]  (* A299405 *)
    Take[b, 100]  (* A299637 *)
    Take[c, 100]  (* A299638 *)
    Take[d, 100]  (* A299641 *)
    Take[e, 100]  (* A299409 *)

A299641 Solution (d(n)) of the system of 5 complementary equations in Comments.

Original entry on oeis.org

4, 8, 13, 17, 21, 25, 30, 34, 38, 42, 47, 51, 55, 59, 64, 68, 72, 76, 81, 85, 89, 93, 98, 102, 106, 110, 115, 119, 123, 127, 132, 136, 140, 144, 149, 153, 157, 161, 166, 170, 174, 178, 183, 187, 191, 195, 200, 204, 208, 212, 217, 221, 225, 229, 234, 238, 242
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = least new;
e(n) = a(n) + b(n) + c(n) + d(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 17n - 11 - 4 a(n) <= 4
0 <= 17n - 7 - 4 b(n) <= 4
0 <= 17n - 3 - 4 c(n) <= 3
0 <= 17n + 1 - 4 d(n) <= 3
0 <= 17n - 5 - e(n) <= 3
***
The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).

Examples

			n:   0  1   2    3   4   5   6   7   8   9
a:   1  5   9   14  18  22  27  31  35  39
b:   2  6   11  15  19  23  28  32  36  40
c:   3  7   12  16  20  24  29  33  37  41
d:   4  8   13  17  21  25  30  34  38  42
e:  10  26  45  62  78  94 114 130 146 162
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,
    Last[a] + Last[b] + Last[c] + Last[d]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];
    Take[a, 100]  (* A299405 *)
    Take[b, 100]  (* A299637 *)
    Take[c, 100]  (* A299638 *)
    Take[d, 100]  (* A299641 *)
    Take[e, 100]  (* A299409 *)

A297464 Solution (a(n)) of the system of 4 complementary equations in Comments.

Original entry on oeis.org

1, 4, 8, 11, 14, 18, 21, 24, 28, 31, 34, 38, 41, 44, 48, 51, 54, 58, 61, 64, 68, 71, 74, 78, 81, 84, 88, 91, 94, 98, 101, 104, 108, 111, 114, 118, 121, 124, 128, 131, 134, 138, 141, 144, 148, 151, 154, 158, 161, 164, 168, 171, 174, 178, 181, 184, 188, 191
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = a(n) + b(n) + c(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 10n - 6 - 3 a(n) <= 2
0 <= 10n - 2 - 3 b(n) <= 3
0 <= 10n + 1 - 3 c(n) <= 3
0 <= 10n - 3 - d(n) <= 2
***
The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A075326, the "anti-Fibonacci sequence." See A299409 for the "anti-tetranacci" sequences.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    8   11   14   18   21   24   28   31
b:   2    5    9   12   15   19   22   25   29   32
c:   3    7   10   13   17   20   23   26   30   33
d:   6   16   27   36   46   57   66   75   87   96
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}];
    Take[a, 100]  (* A297464 *)
    Take[b, 100]  (* A297465 *)
    Take[c, 100]  (* A297466 *)
    Take[d, 100]  (* A265389 *)

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) (conjectured).
d(n) = A275389(n) for n >= 0.

A298873 Solution (c(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

3, 16, 27, 43, 60, 79, 100, 126, 153, 182, 213, 249, 289, 330, 373, 418, 465, 514, 565, 624, 683, 744, 807, 872, 939, 1008, 1082, 1157, 1234, 1313, 1394, 1477, 1562, 1652, 1746, 1841, 1938, 2037, 2138, 2241, 2346, 2453, 2562, 2673, 2786, 2904, 3023, 3147
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.

Examples

			n:   0    1    2    3    4    5    6    7    8   9
a:   1    4    5    7    8    9   10   12   13   14
b:   2    6   11   18   26   35   45   57   70   84
c:   3   16   27   43   60   30   79  100  126  153
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]],
       AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
    Take[a, 100]  (* A298871 *)
    Take[b, 100]  (* A298872 *)
    Take[c, 100]  (* A298873 *)

A298875 Solution (b(n)) of the system of 3 equations in Comments.

Original entry on oeis.org

2, 6, 11, 18, 26, 35, 45, 57, 70, 84, 99, 116, 135, 155, 176, 198, 221, 245, 270, 298, 327, 357, 388, 420, 453, 487, 523, 560, 598, 637, 677, 718, 760, 804, 850, 897, 945, 994, 1044, 1095, 1147, 1200, 1254, 1309, 1365, 1423, 1482, 1543, 1605, 1668, 1732
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed.
***
Do these sequences a,b,c partition the positive integers? They differ from the corresponding partitioning sequences A298871, A298872, and A298872. For example, A298872(56) = 2139, whereas A298875(56) = 2138.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    5    7    8    9   10   12   13   14
b:   2    6   11   18   26   35   45   57   70   84
c:   3   16   27   43   60   30   79  100  126  153
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, Last[a] + Last[b]],
       AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
    Take[a, 100]  (*A298874*)
    Take[b, 100]  (*A298875*)
    Take[c, 100]  (*A298876*)

A296484 Solution (a(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 4:
a(n) = least new;
b(n) = a(n-1)+c(n-1);
c(n) = 2 a(n) + b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.

Examples

			n:   0   1    2    3    4    5    6    7   8     9
a:   1   3    6    7    8    9   10   12  13    15
b:   2   5   14   32   53   77  104  134  170  209
c:   4  11   26   46   69   95  124  158  196  239
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {4}; n = 1;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, a[[n - 1]] + c[[n - 1]]],
       AppendTo[c, 2 Last[a] + Last[b]]}, {z}];
    Take[a, 100]  (* A296484 *)
    Take[b, 100]  (* A296502 *)
    Take[c, 100]  (* A297149 *)

A296502 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 5, 14, 32, 53, 77, 104, 134, 170, 209, 254, 302, 353, 407, 464, 524, 587, 653, 722, 794, 869, 950, 1034, 1121, 1211, 1304, 1403, 1505, 1610, 1718, 1829, 1943, 2060, 2180, 2303, 2429, 2558, 2690, 2825, 2966, 3110, 3257, 3407, 3560, 3716, 3878, 4043, 4211
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 4:
a(n) = least new;
b(n) = a(n-1)+c(n-1);
c(n) = 2 a(n) + b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.

Examples

			n:   0   1    2    3    4    5    6    7   8     9
a:   1   3    6    7    8    9   10   12  13    15
b:   2   5   14   32   53   77  104  134  170  209
c:   4  11   26   46   69   95  124  158  196  239
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {4}; n = 1;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, a[[n - 1]] + c[[n - 1]]],
       AppendTo[c, 2 Last[a] + Last[b]]}, {z}];
    Take[a, 100]  (* A296484 *)
    Take[b, 100]  (* A296502 *)
    Take[c, 100]  (* A297149 *)

A297149 Solution (c(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

4, 11, 26, 46, 69, 95, 124, 158, 196, 239, 286, 336, 389, 445, 504, 566, 631, 699, 770, 844, 923, 1006, 1092, 1181, 1273, 1370, 1471, 1575, 1682, 1792, 1905, 2021, 2140, 2262, 2387, 2515, 2646, 2780, 2919, 3062, 3208, 3357, 3509, 3664, 3824, 3988, 4155, 4325
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 4:
a(n) = least new;
b(n) = a(n-1)+c(n-1);
c(n) = 2 a(n) + b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.

Examples

			n:   0   1    2    3    4    5    6    7   8     9
a:   1   3    6    7    8    9   10   12  13    15
b:   2   5   14   32   53   77  104  134  170  209
c:   4  11   26   46   69   95  124  158  196  239
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {4}; n = 1;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, a[[n - 1]] + c[[n - 1]]],
       AppendTo[c, 2 Last[a] + Last[b]]}, {z}];
    Take[a, 100]  (* A296484 *)
    Take[b, 100]  (* A296502 *)
    Take[c, 100]  (* A297149 *)

A297291 Solution (a(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 4, 5, 9, 12, 13, 16, 17, 21, 22, 27, 28, 31, 32, 37, 38, 41, 44, 47, 48, 51, 52, 57, 58, 61, 62, 67, 68, 71, 72, 77, 78, 81, 84, 85, 89, 90, 93, 97, 98, 101, 104, 107, 108, 111, 112, 117, 118, 121, 122, 127, 128, 131, 132, 137, 138, 141, 144, 147, 148
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively:
a(n) = least new;
b(n) = least new > = a(n) + 2;
c(n) = a(n) + b(n) - 2;
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Conjectures: for n >=0,
0 <= 5*n + 4 - 2*a(n) <= 5,
0 <= 5*n + 8 - 2*b(n) <= 4,
0 <= c(n) - 5n <= 4.

Examples

			n:   0   1   2   3   4   5   6   7   8   9  10
a:   1   4   5   9  12  13  16  17  21  27  28
b:   3   6   7  11  14  15  19  20  23  25  29
c:   2   8  10  18  24  26  33  35  42  45  54
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = b = c = {};
    Do[{AppendTo[a,
        mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + 2]],
       AppendTo[c, Last[a] + Last[b] - 2]}, {z}];
    Take[a, 100]  (* A297291 *)
    Take[b, 100]  (* A297292 *)
    Take[c, 100]  (* A297293 *)
    (* Peter J. C. Moses,  Apr 23 2018 *)

A297292 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

3, 6, 7, 11, 14, 15, 19, 20, 23, 25, 29, 30, 34, 36, 39, 40, 43, 46, 49, 50, 53, 55, 59, 60, 64, 65, 69, 70, 73, 75, 79, 80, 83, 86, 87, 91, 92, 95, 99, 100, 103, 106, 109, 110, 113, 115, 119, 120, 124, 126, 129, 130, 133, 135, 139, 140, 143, 146, 149, 150
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively:
a(n) = least new;
b(n) = least new > = a(n) + 2;
c(n) = a(n) + b(n) - 2;
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Conjectures: for n >= 0,
0 <= 5*n + 4 - 2*a(n) <= 5,
0 <= 5*n + 8 - 2*b(n) <= 4,
0 <= c(n) - 5n <= 4.

Examples

			n:   0   1   2   3   4   5   6   7   8   9  10
a:   1   4   5   9  12  13  16  17  21  27  28
b:   3   6   7  11  14  15  19  20  23  25  29
c:   2   8  10  18  24  26  33  35  42  45  54
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = b = c = {};
    Do[{AppendTo[a,
        mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + 2]],
       AppendTo[c, Last[a] + Last[b] - 2]}, {z}];
    Take[a, 100]  (* A297291 *)
    Take[b, 100]  (* A297292 *)
    Take[c, 100]  (* A297293 *)
    (* Peter J. C. Moses, Apr 23 2018 *)
Previous Showing 11-20 of 34 results. Next