cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A302237 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k+1)/2).

Original entry on oeis.org

1, 2, 8, 26, 76, 216, 590, 1554, 3988, 9988, 24464, 58794, 138866, 322808, 739658, 1672372, 3734848, 8245956, 18012114, 38952586, 83448832, 177194716, 373111970, 779430870, 1615995262, 3326484686, 6800794428, 13813260736, 27881653590, 55942340000, 111601021856
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A000294 and A028377.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000217(k).
a(n) ~ exp(2*Pi*n^(3/4)/3 + 7*Zeta(3)*sqrt(n) / (2*Pi^2) - 49*Zeta(3)^2 * n^(1/4) / (4*Pi^5) + 22411 * Zeta(3)^3 / (392*Pi^8) - Zeta(3)/(8*Pi^2) + 1/24) * Pi^(1/24) / (sqrt(A) * 2^(25/12) * n^(61/96)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018
G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^3) ). Cf. A000122 and A156616. - Peter Bala, Dec 23 2021

A308286 Expansion of Product_{i>=1, j>=1} theta_3(x^(i*j)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 4, 12, 20, 40, 84, 140, 252, 456, 752, 1260, 2128, 3392, 5436, 8760, 13582, 21092, 32744, 49620, 75104, 113448, 168508, 249620, 368840, 538412, 783480, 1136652, 1634000, 2341280, 3344680, 4743684, 6706120, 9452392, 13245800, 18504888, 25777520, 35735376
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 37; CoefficientList[Series[Product[Product[EllipticTheta[3, 0, x^(i j)], {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Product[EllipticTheta[3, 0, x^k]^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} theta_3(x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: Product_{i>=1, j>=1} (Sum_{k=-oo..+oo} x^(i*j*k^2)).
G.f.: Product_{i>=1, j>=1, k>=1} (1 - x^(i*j*k))*(1 + x^(i*j*k))^3/(1 + x^(2*i*j*k))^2.
G.f.: Product_{k>=1} (1 - x^k)^tau_3(k)*(1 + x^k)^(3*tau_3(k))/(1 + x^(2*k))^(2*tau_3(k)), where tau_3 = A007425.

A308288 Expansion of Product_{i>=1, j>=1} theta_3(x^(i*j))/theta_4(x^(i*j)), where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 16, 56, 172, 496, 1360, 3528, 8824, 21344, 50048, 114360, 255336, 557888, 1195952, 2519264, 5221076, 10660512, 21467904, 42674520, 83812560, 162753584, 312689168, 594740456, 1120498048, 2092059800, 3872731232, 7110830376, 12955269304, 23428775520
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2019

Keywords

Comments

Convolution of the sequences A305050 and A308286.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[Product[EllipticTheta[3, 0, x^(i j)]/EllipticTheta[4, 0, x^(i j)], {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k]/EllipticTheta[4, 0, x^k])^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (theta_3(x^k)/theta_4(x^k))^tau(k), where tau = number of divisors (A000005).
G.f.: Product_{i>=1, j>=1} (Sum_{k=-oo..+oo} x^(i*j*k^2))/(Sum_{k=-oo..+oo} (-1)^k*x^(i*j*k^2)).
G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^4/(1 + x^(2*i*j*k))^2.
G.f.: Product_{k>=1} (1 + x^k)^(4*tau_3(k))/(1 + x^(2*k))^(2*tau_3(k)), where tau_3 = A007425.

A318579 Expansion of Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^(i*j).

Original entry on oeis.org

1, 2, 10, 30, 98, 270, 786, 2046, 5418, 13556, 33726, 81002, 192902, 447562, 1027990, 2316750, 5165398, 11345298, 24668952, 52972902, 112688802, 237193354, 494933514, 1023238806, 2098662698, 4269141516, 8620916966, 17280687472, 34405835066, 68044209950, 133732805458
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 29 2018

Keywords

Comments

Convolution of A280540 and A280541.

Crossrefs

Programs

  • Maple
    a:=series(mul(mul(((1+x^(i*j))/(1-x^(i*j)))^(i*j),j=1..100),i=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[Product[((1 + x^(i j))/(1 - x^(i j)))^(i j), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k DivisorSigma[0, k]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(1 - (-1)^(k/d)) d^2 DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*tau(k)), where tau(k) = number of divisors of k (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (1 - (-1)^(k/d))*d^2*tau(d) ) * x^k/k).
log(a(n)) ~ 3^(2/3) * (7*Zeta(3))^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Sep 03 2018

A320237 G.f.: Product_{k>=1, j>=1} ((1 + x^(k*j)) / (1 - x^(k*j)))^2.

Original entry on oeis.org

1, 4, 16, 52, 156, 428, 1120, 2772, 6616, 15224, 34032, 74020, 157340, 327244, 667824, 1338828, 2641332, 5133372, 9840432, 18621476, 34818852, 64374564, 117768176, 213306948, 382733816, 680630120, 1200198784, 2099417544, 3644332860, 6280017740, 10746594208
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2018

Keywords

Comments

Self-convolution of A301554.
Convolution of A320235 and A320236.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(k*j))/(1-x^(k*j)))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x]

Formula

Conjecture: log(a(n)) ~ Pi * sqrt(n*log(n)).

A321057 a(n) = [x^n] Product_{k>=1} ((1 + x^k)/(1 - x^k))^sigma_n(k).

Original entry on oeis.org

1, 2, 12, 94, 1522, 48154, 3087600, 377880794, 93356591804, 46415548879976, 44773963087975388, 86770399797767582434, 340765670578000502365102, 2625605734866823121935402410, 40755373130582885082115865730892, 1290109927277547765958474680645604818
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^DivisorSigma[n, k], {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 27 2018 *)
  • PARI
    {a(n) = polcoeff(prod(k=1, n, ((1+x^k+x*O(x^n))/(1-x^k+x*O(x^n)))^sigma(k, n)), n)}

A321240 Expansion of Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)).

Original entry on oeis.org

1, 2, 10, 26, 86, 210, 594, 1394, 3530, 8006, 18842, 41258, 92190, 195714, 419538, 867050, 1797568, 3625758, 7311382, 14431294, 28416514, 55010142, 106101558, 201814518, 382213566, 715473554, 1333083950, 2459265058, 4515151234, 8218572030, 14888270366, 26766878302
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2018

Keywords

Comments

Convolution of the sequences A280486 and A280487.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(   (&*[(&*[(&*[(&*[(1+x^(i*j*k*l))/(1-x^(i*j*k*l)): i in [1..m]]): j in [1..m]]): k in [1..m]]): l in [1..m]]))); // G. C. Greubel, Nov 01 2018
  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[(1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)), {i,1,nmax}, {j,1,nmax/i}, {k,1,nmax/i/j}, {l,1,nmax/i/j/k}], {x,0,nmax}], x]] (* G. C. Greubel, Nov 01 2018 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1,m, ((1+x^k)/(1-x^k))^ sumdiv(k, d, numdiv(k/d)*numdiv(d)))) \\ G. C. Greubel, Nov 01 2018
    

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A007426(k).

A302238 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^prime(k).

Original entry on oeis.org

1, 4, 14, 46, 136, 382, 1022, 2626, 6530, 15784, 37218, 85842, 194146, 431358, 943038, 2031454, 4316884, 9058662, 18787730, 38542526, 78264298, 157403290, 313712482, 619919350, 1215125262, 2363570168, 4563951858, 8751621598, 16670498062, 31553539214, 59361428202
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A030009 and A061152.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000040(k).

A302239 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 2, 6, 16, 40, 96, 226, 512, 1140, 2488, 5336, 11270, 23494, 48356, 98438, 198338, 395846, 783136, 1536800, 2992818, 5786952, 11114950, 21213906, 40247696, 75928804, 142475644, 265985628, 494155176, 913802164, 1682338192, 3084101744, 5630853218, 10240484332, 18553818210
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A001970 and A261049.

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000041(k).
Previous Showing 11-19 of 19 results.