cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions:
  {{1},{1}}  {{1},{1},{1}}  {{1},{1},{2,3}}    {{1},{1},{2,3,4}}
             {{1},{2},{2}}  {{1},{2},{1,2}}    {{2},{1,2},{1,2}}
                            {{2},{2},{1,2}}    {{3},{3},{1,2,3}}
                            {{1},{1},{1},{1}}  {{1},{1},{1},{2,3}}
                            {{1},{1},{2},{2}}  {{1},{1},{3},{2,3}}
                            {{1},{2},{2},{2}}  {{1},{2},{2},{1,2}}
                            {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                               {{1},{2},{3},{2,3}}
                                               {{1},{3},{3},{2,3}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
                                               {{1},{1},{2},{2},{2}}
                                               {{1},{2},{2},{2},{2}}
                                               {{1},{2},{2},{3},{3}}
                                               {{1},{2},{3},{3},{3}}
                                               {{1},{2},{3},{4},{4}}
		

Crossrefs

The case of unlabeled graphs is A140637, complement A134964.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A367867, complement A133686.
With distinct edges we have A368094 connected A368409.
The complement with distinct edges is A368095, connected A368410.
Allowing repeated elements gives A368097, ranks A355529.
The complement allowing repeats is A368098, ranks A368100.
Factorizations of this type are counted by A368413, complement A368414.
The complement is counted by A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A368533 Numbers whose binary indices are all squarefree.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 115, 116, 117, 118, 119, 512
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2024

Keywords

Comments

The complement first differs from A115419 in having 128.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
    0:       0 ~ {}
    1:       1 ~ {1}
    2:      10 ~ {2}
    3:      11 ~ {1,2}
    4:     100 ~ {3}
    5:     101 ~ {1,3}
    6:     110 ~ {2,3}
    7:     111 ~ {1,2,3}
   16:   10000 ~ {5}
   17:   10001 ~ {1,5}
   18:   10010 ~ {2,5}
   19:   10011 ~ {1,2,5}
   20:   10100 ~ {3,5}
   21:   10101 ~ {1,3,5}
   22:   10110 ~ {2,3,5}
   23:   10111 ~ {1,2,3,5}
   32:  100000 ~ {6}
   33:  100001 ~ {1,6}
   34:  100010 ~ {2,6}
   35:  100011 ~ {1,2,6}
   36:  100100 ~ {3,6}
   37:  100101 ~ {1,3,6}
   38:  100110 ~ {2,3,6}
		

Crossrefs

Set multipartitions: A049311, A050320, A089259, A116540.
For prime indices instead of binary indices we have A302478.
The case of prime binary indices is A326782.
The case of squarefree product is A371289.
For prime-power product we have A371290.
For nonprime binary indices we have A371443, composite A371444.
The semiprime case is A371453, squarefree case of A371454.
A005117 lists squarefree numbers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],And@@SquareFreeQ/@bpe[#]&]
  • Python
    from math import isqrt
    from sympy import mobius
    def A368533(n):
        def f(x,n): return int(n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def A005117(n):
            m, k = n, f(n,n)
            while m != k: m, k = k, f(k,n)
            return m
        return sum(1<<A005117(i)-1 for i, j in enumerate(bin(n-1)[:1:-1],1) if j=='1') # Chai Wah Wu, Oct 24 2024

A379306 Number of squarefree prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 1, 4, 0, 1, 2, 4, 1, 2, 1, 3, 3, 1, 1, 5, 0, 3, 2, 3, 0, 4, 2, 3, 1, 2, 1, 4, 0, 2, 2, 6, 2, 3, 1, 3, 1, 2, 0, 5, 1, 1, 3, 2, 1, 3, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 2.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000079.
Positions of zero are A379307, counted by A114374 (strict A256012).
Positions of one are A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A008966(k).

A381719 Numbers whose prime indices cannot be partitioned into sets with a common sum.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2025

Keywords

Comments

Differs from A059404, A323055, A376250 in lacking 150.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also numbers that cannot be factored into squarefree numbers with a common sum of prime indices (A056239).

Examples

			The prime indices of 150 are {1,2,3,3}, and {{3},{3},{1,2}} is a partition into sets with a common sum, so 150 is not in the sequence.
		

Crossrefs

Twice-partitions of this type (sets with a common sum) are counted by A279788.
These multiset partitions (sets with a common sum) are ranked by A326534 /\ A302478.
For distinct block-sums we have A381806, counted by A381990 (complement A381992).
For constant blocks we have A381871 (zeros of A381995), counted by A381993.
Partitions of this type are counted by A381994.
These are the zeros of A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
The complement counted by A383308.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers, see A381078, A381454.
A050326 counts factorizations into distinct squarefree numbers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A381633 counts set systems with distinct sums, see A381634, A293243.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Select[Range[100],Select[mps[prix[#]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]=={}&]

A382080 Number of ways to partition the prime indices of n into sets with a common sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices.

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
  {{1,2,3},{1,2,3}}
  {{3},{3},{1,2},{1,2}}
So a(900) = 2.
		

Crossrefs

For just sets we have A050320, distinct A050326.
Twice-partitions of this type are counted by A279788.
For just a common sum we have A321455.
MM-numbers of these multiset partitions are A326534 /\ A302478.
For distinct instead of equal sums we have A381633.
For constant instead of strict blocks we have A381995.
Positions of 0 are A381719, counted by A381994.
A000688 counts factorizations into prime powers, distinct A050361.
A001055 counts factorizations, strict A045778.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]

A320459 MM-numbers of labeled multigraphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    169: {{1,2},{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
   2197: {{1,2},{1,2},{1,2}}
   4901: {{1,2},{1,2},{1,3}}
   7943: {{1,2},{1,2},{2,3}}
  10933: {{1,2},{1,3},{1,3}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  25181: {{1,2},{1,2},{3,4}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  28561: {{1,2},{1,2},{1,2},{1,2}}
  28717: {{1,2},{2,3},{2,3}}
  39527: {{1,3},{1,3},{2,3}}
  44603: {{1,2},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A320532 MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  359: {{1,1,1,2,2}}
  371: {{1,1},{1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]

A320533 MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  343: {{1,1},{1,1},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]

A320630 Products of primes of nonprime squarefree index.

Original entry on oeis.org

2, 4, 8, 13, 16, 26, 29, 32, 43, 47, 52, 58, 64, 73, 79, 86, 94, 101, 104, 113, 116, 128, 137, 139, 146, 149, 158, 163, 167, 169, 172, 181, 188, 199, 202, 208, 226, 232, 233, 256, 257, 269, 271, 274, 278, 292, 293, 298, 313, 316, 317, 326, 334, 338, 344, 347
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The index of a prime number n is the number m such that n is the m-th prime.

Examples

			The sequence of terms begins:
    2 = prime(1)
    4 = prime(1)^2
    8 = prime(1)^3
   13 = prime(6)
   16 = prime(1)^4
   26 = prime(1)*prime(6)
   29 = prime(10)
   32 = prime(1)^5
   43 = prime(14)
   47 = prime(15)
   52 = prime(1)^2*prime(6)
   58 = prime(1)*prime(10)
   64 = prime(1)^6
   73 = prime(21)
   79 = prime(22)
   86 = prime(1)*prime(14)
   94 = prime(1)*prime(15)
  101 = prime(26)
  104 = prime(1)^3*prime(6)
  113 = prime(30)
  116 = prime(1)^2*prime(10)
  128 = prime(1)^7
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],With[{f=PrimePi/@First/@FactorInteger[#]},And[And@@SquareFreeQ/@f,And@@Not/@PrimeQ/@f]]&]

A356944 MM-numbers of multisets of gapless multisets of positive integers. Products of primes indexed by elements of A073491.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2022

Keywords

Comments

A multiset is gapless if it covers an interval of positive integers. For example, {2,3,3,4} is gapless but {1,1,3,3} is not.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. The size of this multiset of multisets is A302242(n). For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The initial terms and corresponding multiset partitions:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  10: {{},{2}}
  11: {{3}}
  12: {{},{},{1}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  16: {{},{},{},{}}
		

Crossrefs

Gapless multisets are counted by A034296, ranked by A073491.
The initial version is A356955.
Other types: A356233, A356941, A356942, A356943.
Other conditions: A302478, A302492, A356930, A356935, A356939, A356940.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A011782 counts multisets covering an initial interval.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nogapQ[m_]:=Or[m=={},Union[m]==Range[Min[m],Max[m]]];
    Select[Range[100],And@@nogapQ/@primeMS/@primeMS[#]&]
Previous Showing 21-30 of 53 results. Next