cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A359677 Zero-based weighted sum of the reversed (weakly decreasing) prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 3, 0, 1, 2, 6, 0, 4, 0, 3, 2, 1, 0, 6, 3, 1, 6, 3, 0, 4, 0, 10, 2, 1, 3, 7, 0, 1, 2, 6, 0, 4, 0, 3, 6, 1, 0, 10, 4, 5, 2, 3, 0, 9, 3, 6, 2, 1, 0, 7, 0, 1, 6, 15, 3, 4, 0, 3, 2, 5, 0, 11, 0, 1, 7, 3, 4, 4, 0, 10, 12, 1, 0, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The reversed prime indices of 12 are (2,1,1), so a(12) = 0*2 + 1*1 + 2*1 = 3.
		

Crossrefs

Positions of 0's are A008578.
Positions of 1's are A100484.
The version for standard compositions is A231204, reverse of A124757.
The one-based version is A318283, unreversed A304818.
The one-based version for standard compositions is A359042, rev of A029931.
This is the reverse version of A359674.
First position of n is A359679(n), reverse of A359675.
Positions of first appearances are A359680, reverse of A359676.
A053632 counts compositions by weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    Table[wts[Reverse[primeMS[n]]],{n,100}]

A359681 Least positive integer whose reversed (weakly decreasing) prime indices have zero-based weighted sum (A359677) equal to n.

Original entry on oeis.org

1, 4, 9, 8, 18, 50, 16, 36, 100, 54, 32, 72, 81, 108, 300, 64, 144, 400, 216, 600, 243, 128, 288, 800, 432, 486, 1350, 648, 256, 576, 729, 864, 2400, 3375, 1296, 3600, 512, 1152, 1944, 1728, 4800, 9000, 2187, 2916, 8100, 1024, 2304, 6400, 3456, 4374, 12150
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    4: {1,1}
    9: {2,2}
    8: {1,1,1}
   18: {1,2,2}
   50: {1,3,3}
   16: {1,1,1,1}
   36: {1,1,2,2}
  100: {1,1,3,3}
   54: {1,2,2,2}
   32: {1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  300: {1,1,2,3,3}
		

Crossrefs

The unreversed version is A359676.
First position of n in A359677, reverse A359674.
The one-based version is A359679, sorted A359754.
The sorted version is A359680, reverse A359675.
The unreversed one-based version is A359682, sorted A359755.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A124757 gives zero-based weighted sum of standard compositions, rev A231204.
A304818 gives weighted sum of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    nn=20;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[Reverse[primeMS[n]]],{n,1,Prime[nn]^2}];
    Table[Position[seq,k][[1,1]],{k,0,nn}]

A372437 (Least binary index of n) minus (least prime index of n).

Original entry on oeis.org

1, -1, 2, -2, 1, -3, 3, -1, 1, -4, 2, -5, 1, -1, 4, -6, 1, -7, 2, -1, 1, -8, 3, -2, 1, -1, 2, -9, 1, -10, 5, -1, 1, -2, 2, -11, 1, -1, 3, -12, 1, -13, 2, -1, 1, -14, 4, -3, 1, -1, 2, -15, 1, -2, 3, -1, 1, -16, 2, -17, 1, -1, 6, -2, 1, -18, 2, -1, 1, -19, 3
Offset: 2

Views

Author

Gus Wiseman, May 06 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Is 0 the only integer not appearing in the data?

Crossrefs

Positions of first appearances are A174090.
For sum instead of minimum we have A372428, zeros A372427.
For maximum instead of minimum we have A372442, zeros A372436.
For length instead of minimum we have A372441, zeros A071814.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Min[bix[n]]-Min[prix[n]],{n,2,100}]

Formula

a(2n) = A001511(n).
a(2n + 1) = -A038802(n).
a(n) = A001511(n) - A055396(n).

A305566 Number of finite sets of relatively prime positive integers > 1 with least common multiple n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 10, 0, 2, 2, 0, 0, 10, 0, 10, 2, 2, 0, 44, 0, 2, 0, 10, 0, 84, 0, 0, 2, 2, 2, 122, 0, 2, 2, 44, 0, 84, 0, 10, 10, 2, 0, 184, 0, 10, 2, 10, 0, 44, 2, 44, 2, 2, 0, 1590, 0, 2, 10, 0, 2, 84, 0, 10, 2, 84, 0, 1156, 0, 2, 10, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2018

Keywords

Comments

From Robert Israel, Jun 06 2018: (Start)
a(n) depends only on the prime signature of n.
If n is in A000961, a(n)=0.
If n is in A006881, a(n)=2. (End)
If n = p^k*q, where p and q are distinct primes and k >= 1, then a(n) = 3*4^(k-1)-2^(k-1). - Robert Israel, Jun 07 2018

Examples

			The a(12) = 10 sets:
{3,4},
{2,3,4}, {2,3,12}, {3,4,6}, {3,4,12},
{2,3,4,6}, {2,3,4,12}, {2,3,6,12}, {3,4,6,12},
{2,3,4,6,12}.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) g(sort(map(t -> t[2],ifactors(n)[2]))) end proc:
    f(1):= 0:
    g:= proc(L) option remember;
      local nL, Cands, nC, Cons, i;
      nL:= nops(L);
      Cands:= [[]];
      for i from 1 to nL do
        Cands:= [seq(seq([op(s),t],t=0..L[i]),s=Cands)];
      od:
      Cands:= remove(t -> max(t)=0, Cands);
      nC:= nops(Cands);
      Cons:= [seq(select(t -> Cands[t][i]=0, {$1..nC}),i=1..nL),
              seq(select(t -> Cands[t][i]=L[i], {$1..nC}), i=1..nL)];
      h(Cons, {$1..nC})
    end proc:
    h:= proc(Cons, Cands)
      local t,i,Consi, Candsi;
      if Cons = [] then return 2^nops(Cands) fi;
      t:= 0;
      for i from 1 to nops(Cons[1]) do
        Consi:= map(proc(t) if member(Cons[1][i],t) then NULL else t minus Cons[1][1..i-1] fi end proc, Cons[2..-1]);
        if member({},Consi) then next fi;
        Candsi:= Cands minus Cons[1][1..i];
        t:= t + procname(Consi, Candsi)
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 07 2018
  • Mathematica
    Table[Length[Select[Subsets[Rest[Divisors[n]]],And[GCD@@#==1,LCM@@#==n]&]],{n,100}]

A305732 Heinz numbers of reducible integer partitions. Numbers n > 1 that are prime or whose prime indices are relatively prime and such that A181819(n) is already in the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n. A multiset m whose distinct elements are m_1, m_2, ..., m_k with multiplicities y_1, y_2, ..., y_k is reducible if either m is of size 1 or gcd(m_1,...,m_k) = 1 and the multiset {y_1,...,y_k} is also reducible.

Examples

			60 has relatively prime prime indices {1,1,2,3} with multiplicities {1,1,2} corresponding to A181819(90) = 12. 12 has relatively prime prime indices {1,1,2} with multiplicities {1,2} corresponding to A181819(12) = 6. 6 has relatively prime prime indices {1,2} with multiplicities {1,1} corresponding to A181819(6) = 4. 4 has relatively prime prime indices {1,1} with multiplicities {2} corresponding to A181819(4) = 3. 3 is prime, so we conclude that 60 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    rdzQ[n_]:=And[n>1,Or[PrimeQ[n],And[rdzQ[Times@@Prime/@FactorInteger[n][[All,2]]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1]]];
    Select[Range[50],rdzQ]

A359679 Least number with weighted sum of reversed (weakly decreasing) prime indices (A318283) equal to n.

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 8, 12, 19, 18, 16, 24, 27, 36, 43, 32, 48, 59, 61, 67, 71, 64, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 0

Views

Author

Gus Wiseman, Jan 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			12 has reversed prime indices (2,1,1), with weighted sum 7, and no number < 12 has the same weighted sum of reversed prime indices, so a(7) = 12.
		

Crossrefs

The version for standard compositions is A089633, zero-based A359756.
First position of n in A318283, unreversed A304818.
The unreversed zero-based version is A359676.
The sorted zero-based version is A359680, unreversed A359675.
The zero-based version is A359681.
The unreversed version is A359682.
The greatest instead of least is A359683, unreversed A359497.
The sorted version is A359754, unreversed A359755.
A112798 lists prime indices, length A001222, sum A056239.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=20;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[Reverse[primeMS[n]]],{n,1,Prime[nn]^2}];
    Table[Position[seq,k][[1,1]],{k,0,nn}]

A359675 Positions of first appearances in the sequence of zero-based weighted sums of prime indices (A359674).

Original entry on oeis.org

1, 4, 6, 8, 12, 14, 16, 20, 24, 30, 32, 36, 40, 48, 52, 56, 72, 80, 92, 96, 100, 104, 112, 124, 136, 148, 152, 172, 176, 184, 188, 212, 214, 236, 244, 248, 262, 268, 272, 284, 292, 304, 316, 328, 332, 346, 356, 376, 386, 388, 398, 404, 412, 428, 436, 452, 458
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
   1: {}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  14: {1,4}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
		

Crossrefs

Positions of first appearances in A359674.
The unsorted version A359676.
The reverse version is A359680, unsorted A359681.
The reverse one-based version is A359754, unsorted A359679.
The one-based version is A359755, unsorted A359682.
The version for standard compositions is A359756, one-based A089633.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239.
A124757 gives zero-based weighted sum of standard compositions, rev A231204.
A304818 gives weighted sum of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=100;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[primeMS[n]],{n,1,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

A359680 Positions of first appearances in the sequence of zero-based weighted sums of reversed prime indices (A359677).

Original entry on oeis.org

1, 4, 8, 9, 16, 18, 32, 36, 50, 54, 64, 72, 81, 100, 108, 128, 144, 216, 243, 256, 288, 300, 400, 432, 486, 512, 576, 600, 648, 729, 800, 864, 1024, 1152, 1296, 1350, 1728, 1944, 2048, 2187, 2304, 2400, 2916, 3375, 3456, 3600, 4096, 4374, 4608, 4800, 5184
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    18: {1,2,2}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
    50: {1,3,3}
    54: {1,2,2,2}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    81: {2,2,2,2}
   100: {1,1,3,3}
   108: {1,1,2,2,2}
   128: {1,1,1,1,1,1,1}
		

Crossrefs

The unreversed version is A359675, unsorted A359676.
Positions of first appearances in A359677, unreversed A359674.
This is the sorted version of A359681.
The one-based version is A359754, unsorted A359679.
The unreversed one-based version is A359755, unsorted A359682.
The version for standard compositions is A359756, one-based A089633.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124757 gives zero-based weighted sums of standard compositions, rev A231204.
A304818 gives weighted sum of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[Reverse[primeMS[n]]],{n,1,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

A359683 Greatest positive integer whose reversed (weakly decreasing) prime indices have weighted sum (A318283) equal to n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 14, 22, 26, 34, 44, 55, 68, 85, 110, 130, 170, 190, 242, 290, 374, 418, 506, 638, 748, 836, 1012, 1276, 1364, 1628, 1914, 2090, 2552, 3190, 3410, 4070, 4510, 5060, 6380, 7018, 8140, 9020, 9922, 11396, 14036, 15004, 17908, 19844, 21692, 23452
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      3: {2}
      5: {3}
      7: {4}
     11: {5}
     14: {1,4}
     22: {1,5}
     26: {1,6}
     34: {1,7}
     44: {1,1,5}
     55: {3,5}
     68: {1,1,7}
     85: {3,7}
    110: {1,3,5}
    130: {1,3,6}
    170: {1,3,7}
    190: {1,3,8}
    242: {1,5,5}
    290: {1,3,10}
The 6 numbers with weighted sum of reversed prime indices 9, together with their prime indices:
  18: {1,2,2}
  23: {9}
  25: {3,3}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
Hence a(9) = 34.
		

Crossrefs

First position of n in A318283, unreversed A304818.
The unreversed version is A359497.
The least instead of greatest is A359679, unreversed A359682.
A112798 lists prime indices, length A001222, sum A056239.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=10;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[Reverse[primeMS[n]]],{n,1,2^nn}];
    Table[Position[seq,k][[-1,1]],{k,0,nn}]

Extensions

More terms from Jinyuan Wang, Jan 26 2023

A359754 Positions of first appearances in the sequence of weighted sums of reversed prime indices (A318283).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 19, 24, 27, 32, 36, 43, 48, 59, 61, 64, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   19: {8}
   24: {1,1,1,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   43: {14}
   48: {1,1,1,1,2}
		

Crossrefs

Positions of first appearances in A318283, unreversed A304818.
This is the sorted version of A359679.
The zero-based version is A359680, unreversed A359675.
The unreversed version is A359755, unsorted A359682.
A053632 counts compositions by weighted sum.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.

Programs

  • Mathematica
    nn=100;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    seq=Table[ots[Reverse[primeMS[n]]],{n,1,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]
Previous Showing 21-30 of 68 results. Next