cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A324326 Number of crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 36, 0, 14, 0, 0, 0, 25, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 103, 0, 0, 0, 0, 0, 0, 0, 75
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Examples

			The a(36) = 10 crossing multiset partitions of {1,1,2,2,3,4}:
  {{1,3},{1,2,2,4}}
  {{2,4},{1,1,2,3}}
  {{1,1,3},{2,2,4}}
  {{1,2,3},{1,2,4}}
  {{1},{1,3},{2,2,4}}
  {{1},{2,4},{1,2,3}}
  {{2},{1,3},{1,2,4}}
  {{2},{1,1,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1},{2},{1,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324325(n) = A318284(n).

A318808 Number of Lyndon permutations of a multiset whose multiplicities are the prime indices of n > 1.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 2, 6, 0, 6, 0, 4, 2, 1, 0, 12, 3, 1, 14, 5, 0, 10, 0, 24, 3, 1, 5, 30, 0, 1, 3, 20, 0, 15, 0, 6, 30, 1, 0, 60, 8, 20, 4, 7, 0, 90, 7, 30, 4, 1, 0, 60, 0, 1, 51, 120, 9, 21, 0, 8, 5, 35, 0, 180, 0, 1, 70, 9, 14, 28, 0, 120
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The Lyndon product of two or more finite sequences is defined to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product.
a(1) = 1 by convention.

Examples

			The a(30) = 10 Lyndon permutations of {1,1,1,2,2,3}:
  (111223)
  (111232)
  (111322)
  (112123)
  (112132)
  (112213)
  (112312)
  (113122)
  (113212)
  (121213)
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Permutations[nrmptn[n]],LyndonQ]],{n,2,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
    count(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, moebius(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
    a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 08 2018

Formula

a(p) = 0 for prime p. - Andrew Howroyd, Dec 08 2018

A320835 a(n) = Sum (-1)^k where the sum is over all multiset partitions of a multiset whose multiplicities are the prime indices of n and k is the number of parts, or factorizations of A181821(n).

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 1, 1, 1, 1, -1, 1, 1, 0, 0, 1, -1, 0, 2, 1, 1, 1, -2, 0, 1, 0, 0, 0, 2, 0, -2, -2, -1, 1, -1, -2, 3, -1, 1, -2, -3, -2, 3, 0, -3, 1, -4, -5, 1, -1, -2, -1, 5, -5, 1, -3, 1, -1, -5, -4, 5, 1, -1, -9, -2, -1, -6, -1, -3, -2, 7, -7, -8, -2, -2
Offset: 1

Views

Author

Gus Wiseman, Oct 21 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, -1)+`if`(isprime(n), 0,
          -add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> `if`(n=1, 1, b(((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
             sort(map(i-> pi(i[1])$i[2], ifactors(n)[2]), `>`)))$2)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 23 2018
  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[(-1)^(Length[m]-1),{m,mps[nrmptn[n]]}],{n,30}]

Formula

a(n) = A316441(A181821(n)).

Extensions

More terms from Alois P. Heinz, Oct 21 2018

A320836 a(n) = Sum (-1)^k where the sum is over all strict multiset partitions of a multiset whose multiplicities are the prime indices of n and k is the number of parts, or strict factorizations of A181821(n).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, -2, -1, 0, -2, 0, -2, -1, -1, -1, -4, -1, -1, -1, -3, 0, -3, 0, -2, -4, -1, -1, -6, -2, -3, -2, -2, 0, -6, -2, -4, -1, -1, 0, -5, 0, -1, -3, -9, -2, -3, 0, -2, -1, -3, 0, -7, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 21 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n>k, 0, -1)+`if`(isprime(n), 0,
          -add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> `if`(n=1, 1, b(((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
             sort(map(i-> pi(i[1])$i[2], ifactors(n)[2]), `>`)))$2)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 23 2018
  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[(-1)^Length[m],{m,Select[mps[nrmptn[n]],UnsameQ@@#&]}],{n,30}]

Formula

a(n) = A114592(A181821(n)).

Extensions

More terms from Alois P. Heinz, Oct 21 2018

A321270 Number of connected multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 5, 4, 7, 3, 11, 7, 10, 1, 15, 9, 22, 7, 19, 12, 30, 5, 22, 19, 28, 14, 42, 22, 56, 1, 33, 30, 42, 20, 77, 45
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(2) = 1 through a(12) = 3 connected multiset partitions:
  {{1}}  {{11}}    {{12}}  {{111}}      {{112}}    {{1111}}
         {{1}{1}}          {{1}{11}}    {{1}{12}}  {{1}{111}}
                           {{1}{1}{1}}             {{11}{11}}
                                                   {{1}{1}{11}}
                                                   {{1}{1}{1}{1}}
.
  {{123}}  {{1122}}      {{1112}}      {{11111}}          {{1123}}
           {{1}{122}}    {{1}{112}}    {{1}{1111}}        {{1}{123}}
           {{12}{12}}    {{11}{12}}    {{11}{111}}        {{12}{13}}
           {{2}{112}}    {{1}{1}{12}}  {{1}{1}{111}}
           {{1}{2}{12}}                {{1}{11}{11}}
                                       {{1}{1}{1}{11}}
                                       {{1}{1}{1}{1}{1}}
The a(18) = 9, a(27) = 28, and a(36) = 20 connected multiset partitions of {1,1,2,2,3}, {1,1,2,2,3,3}, and {1,1,2,2,3,4} respectively:
  {{1,1,2,2,3}}      {{1,1,2,2,3,3}}        {{1,1,2,2,3,4}}
  {{1},{1,2,2,3}}    {{1},{1,2,2,3,3}}      {{1},{1,2,2,3,4}}
  {{1,2},{1,2,3}}    {{1,1,2},{2,3,3}}      {{1,1,2},{2,3,4}}
  {{1,3},{1,2,2}}    {{1,1,3},{2,2,3}}      {{1,2},{1,2,3,4}}
  {{2},{1,1,2,3}}    {{1,2},{1,2,3,3}}      {{1,2,2},{1,3,4}}
  {{2,3},{1,1,2}}    {{1,2,2},{1,3,3}}      {{1,2,3},{1,2,4}}
  {{1},{1,2},{2,3}}  {{1,2,3},{1,2,3}}      {{1,3},{1,2,2,4}}
  {{1},{2},{1,2,3}}  {{1,3},{1,2,2,3}}      {{1,4},{1,2,2,3}}
  {{2},{1,2},{1,3}}  {{2},{1,1,2,3,3}}      {{2},{1,1,2,3,4}}
                     {{2,3},{1,1,2,3}}      {{2,3},{1,1,2,4}}
                     {{3},{1,1,2,2,3}}      {{2,4},{1,1,2,3}}
                     {{1},{1,2},{2,3,3}}    {{1},{1,2},{2,3,4}}
                     {{1},{1,3},{2,2,3}}    {{1},{2},{1,2,3,4}}
                     {{1},{2},{1,2,3,3}}    {{1,2},{1,3},{2,4}}
                     {{1,2},{1,3},{2,3}}    {{1,2},{1,4},{2,3}}
                     {{1},{2,3},{1,2,3}}    {{1},{2,3},{1,2,4}}
                     {{1},{3},{1,2,2,3}}    {{1},{2,4},{1,2,3}}
                     {{2},{1,2},{1,3,3}}    {{2},{1,2},{1,3,4}}
                     {{2},{1,3},{1,2,3}}    {{2},{1,3},{1,2,4}}
                     {{2},{2,3},{1,1,3}}    {{2},{1,4},{1,2,3}}
                     {{2},{3},{1,1,2,3}}
                     {{3},{1,2},{1,2,3}}
                     {{3},{1,3},{1,2,2}}
                     {{3},{2,3},{1,1,2}}
                     {{1},{2},{1,3},{2,3}}
                     {{1},{2},{3},{1,2,3}}
                     {{1},{3},{1,2},{2,3}}
                     {{2},{3},{1,2},{1,3}}
		

Crossrefs

A321272 Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 5, 1, 4, 4, 7, 3, 11, 7, 8, 1, 15, 8, 22, 7, 14, 12, 30, 5, 16, 19, 20, 14, 42, 18, 56, 1, 24, 30, 28, 18, 77, 45, 38, 14
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(15) = 8 multiset partitions:
  {{1}}  {{11}}    {{12}}  {{111}}      {{112}}    {{1111}}
         {{1}{1}}          {{1}{11}}    {{1}{12}}  {{1}{111}}
                           {{1}{1}{1}}             {{11}{11}}
                                                   {{1}{1}{11}}
                                                   {{1}{1}{1}{1}}
.
  {{123}}  {{1122}}      {{1112}}      {{11111}}
           {{1}{122}}    {{1}{112}}    {{1}{1111}}
           {{2}{112}}    {{11}{12}}    {{11}{111}}
           {{1}{2}{12}}  {{1}{1}{12}}  {{1}{1}{111}}
                                       {{1}{11}{11}}
                                       {{1}{1}{1}{11}}
                                       {{1}{1}{1}{1}{1}}
.
  {{1123}}    {{111111}}            {{11112}}        {{11122}}
  {{1}{123}}  {{1}{11111}}          {{1}{1112}}      {{1}{1122}}
  {{12}{13}}  {{11}{1111}}          {{11}{112}}      {{11}{122}}
              {{111}{111}}          {{12}{111}}      {{2}{1112}}
              {{1}{1}{1111}}        {{1}{1}{112}}    {{1}{1}{122}}
              {{1}{11}{111}}        {{1}{11}{12}}    {{1}{2}{112}}
              {{11}{11}{11}}        {{1}{1}{1}{12}}  {{2}{11}{12}}
              {{1}{1}{1}{111}}                       {{1}{1}{2}{12}}
              {{1}{1}{11}{11}}
              {{1}{1}{1}{1}{11}}
              {{1}{1}{1}{1}{1}{1}}
		

Crossrefs

Formula

a(prime(n)) = A000041(n).

A322260 Numbers k such that the poset of multiset partitions of a multiset whose multiplicities are the prime indices of k is a lattice.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 32
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

This multiset (row k of A305936) is generally not the same as the multiset of prime indices of k. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

References

  • R. P Stanley, Enumerative Combinatorics Vol. 1, Sec. 3.3.

Crossrefs

A321279 Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

Examples

			The sequence of antichains begins:
   2: {{1}}
   3: {{1,1}}
   3: {{1},{1}}
   4: {{1,2}}
   5: {{1,1,1}}
   5: {{1},{1},{1}}
   6: {{1,1,2}}
   7: {{1,1,1,1}}
   7: {{1,1},{1,1}}
   7: {{1},{1},{1},{1}}
   8: {{1,2,3}}
   9: {{1,1,2,2}}
  10: {{1,1,1,2}}
  10: {{1,1},{1,2}}
  11: {{1,1,1,1,1}}
  11: {{1},{1},{1},{1},{1}}
  12: {{1,1,2,3}}
  12: {{1,2},{1,3}}
  13: {{1,1,1,1,1,1}}
  13: {{1,1,1},{1,1,1}}
  13: {{1,1},{1,1},{1,1}}
  13: {{1},{1},{1},{1},{1},{1}}
  14: {{1,1,1,1,2}}
  14: {{1,2},{1,1,1}}
  15: {{1,1,1,2,2}}
  15: {{1,1},{1,2,2}}
  16: {{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]

A321743 Sum of coefficients of monomial symmetric functions in the elementary symmetric function of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 10, 9, 5, 1, 20, 1, 6, 14, 47, 1, 50, 1, 30, 20, 7, 1, 110, 29, 8, 157, 42, 1, 97, 1, 246, 27, 9, 49, 338, 1, 10, 35, 206, 1, 159, 1, 56, 353, 11, 1, 732, 99, 224, 44, 72, 1, 1184, 76, 332, 54, 12, 1, 743, 1, 13, 677, 1602, 111, 242, 1, 90
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of set multipartitions (multisets of sets) of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.

Examples

			The sum of coefficients of e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111) is a(12) = 20.
The a(2) = 1 through a(9) = 9 size-preserving permutations of set multipartitions:
  {1} {1}{1} {12}   {1}{1}{1} {1}{12}   {1}{1}{1}{1} {123}     {12}{12}
             {1}{2}           {1}{1}{2}              {1}{23}   {1}{2}{12}
             {2}{1}           {1}{2}{1}              {2}{13}   {2}{1}{12}
                              {2}{1}{1}              {3}{12}   {1}{1}{2}{2}
                                                     {1}{2}{3} {1}{2}{1}{2}
                                                     {1}{3}{2} {1}{2}{2}{1}
                                                     {2}{1}{3} {2}{1}{1}{2}
                                                     {2}{3}{1} {2}{1}{2}{1}
                                                     {3}{1}{2} {2}{2}{1}{1}
                                                     {3}{2}{1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And@@UnsameQ@@@#&]}],{n,30}]

A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 3, 3, 6, 5, 10, 16, 12, 7, 27, 11, 20, 32, 47, 15, 76, 22, 56, 65, 35, 30, 136, 79, 54, 263, 114, 42, 191, 56, 246, 113, 86, 160, 476, 77, 128, 199, 344
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of multiset partitions of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.

Examples

			The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27.
The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions:
  {11}    {12}    {111}      {112}      {1111}        {123}      {1122}
  {1}{1}  {1}{2}  {1}{11}    {1}{12}    {1}{111}      {1}{23}    {1}{122}
          {2}{1}  {1}{1}{1}  {2}{11}    {11}{11}      {2}{13}    {11}{22}
                             {1}{1}{2}  {1}{1}{11}    {3}{12}    {12}{12}
                             {1}{2}{1}  {1}{1}{1}{1}  {1}{2}{3}  {2}{112}
                             {2}{1}{1}                {1}{3}{2}  {22}{11}
                                                      {2}{1}{3}  {1}{1}{22}
                                                      {2}{3}{1}  {1}{2}{12}
                                                      {3}{1}{2}  {2}{1}{12}
                                                      {3}{2}{1}  {2}{2}{11}
                                                                 {1}{1}{2}{2}
                                                                 {1}{2}{1}{2}
                                                                 {1}{2}{2}{1}
                                                                 {2}{1}{1}{2}
                                                                 {2}{1}{2}{1}
                                                                 {2}{2}{1}{1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}]
Previous Showing 41-50 of 53 results. Next